首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We study the formation and evolution of voids in the dark matter distribution using various simulations of the popular Λ cold dark matter cosmogony. We identify voids by requiring them to be regions of space with a mean overdensity of −0.8 or less – roughly the equivalent of using a spherical overdensity group finder for haloes. Each of the simulations contains thousands of voids. The distribution of void sizes in the different simulations shows good agreement when differences in particle and grid resolution are accounted for. Voids very clearly correspond to minima in the smoothed initial density field. Apart from a very weak dependence on the mass resolution, the rescaled mass profiles of voids in the different simulations agree remarkably well. We find a universal void mass profile of the form  ρ(< r )/ρ( r eff) ∝ exp[( r / r eff)α]  , where r eff is the effective radius of a void and  α∼ 2  . The mass function of haloes in voids is steeper than that of haloes that populate denser regions. In addition, the abundances of void haloes seem to evolve somewhat more strongly between redshifts ∼1 and 0 than the global abundances of haloes.  相似文献   

2.
Voids are a dominant feature of the low-redshift galaxy distribution. Several recent surveys have found evidence for the existence of large-scale structure at high redshifts as well. We present analytic estimates of galaxy void sizes at redshifts   z ∼ 5–10  using the excursion set formalism. We find that recent narrow-band surveys at   z ∼ 5–6.5  should find voids with characteristic scales of roughly 20 comoving Mpc and maximum diameters approaching 40 Mpc. This is consistent with existing surveys, but a precise comparison is difficult because of the relatively small volumes probed so far. At   z ∼ 7–10  , we expect characteristic void scales of ∼14–20 comoving Mpc assuming that all galaxies within dark matter haloes more massive than  1010 M  are observable. We find that these characteristic scales are similar to the sizes of empty regions resulting from purely random fluctuations in the galaxy counts. As a result, true large-scale structure will be difficult to observe at   z ∼ 7–10  , unless galaxies in haloes with masses  ≲109 M  are visible. Galaxy surveys must be deep and only the largest voids will provide meaningful information. Our model provides a convenient picture for estimating the 'worst-case' effects of cosmic variance on high-redshift galaxy surveys with limited volumes.  相似文献   

3.
We analysed the distribution of void sizes in the two-dimensional slices of the Las Campanas Redshift Survey (LCRS). Fourteen volume-limited subsamples were extracted from the six slices to cover a large part of the survey and to test the robustness of the results against cosmic variance. Thirteen samples were randomly culled to produce homogeneously selected samples. We then studied the relationship between the cumulative area covered by voids and the void size as a property of the void hierarchy. We found that the distribution of void sizes scaled with the mean galaxy separation, λ . In particular, we found that the size of voids covering half of the area is given by D med≈ λ +(12±3)  h −1 Mpc. Next, by employing an environmental density threshold criterion to identify mock galaxies, we were able to extend this analysis to mock samples from dynamical N -body simulations of cold dark matter (CDM) models. To reproduce the observed void statistics, overdensity thresholds of δ th≈0,…,1 are necessary. We compared standard (SCDM), open (OCDM), vacuum energy dominated (ΛCDM) and broken scale invariant CDM models (BCDM): we found that both the void size distribution and the two-point correlation function provided important and complementary information on the large-scale matter distribution. The dependence of the void statistics on the threshold criterion for the mock galaxy identification showed that the galaxy biasing was more crucial for the void size distribution than were differences between the cosmological models.  相似文献   

4.
5.
We investigate the properties of 1D flux 'voids' (connected regions in the flux distribution above the mean-flux level) by comparing hydrodynamical simulations of large cosmological volumes with a set of observed high-resolution spectra at z ∼ 2. After addressing the effects of box size and resolution, we study how the void distribution changes when the most significant cosmological and astrophysical parameters are varied. We find that the void distribution in the flux is in excellent agreement with predictions of the standard Λcold dark matter (ΛCDM) cosmology, which also fits other flux statistics remarkably well. We then model the relation between flux voids and the corresponding 1D gas-density field along the line of sight and make a preliminary attempt to connect the 1D properties of the gas-density field to the 3D dark matter distribution at the same redshift. This provides a framework that allows statistical interpretations of the void population at high redshift using observed quasar spectra, and eventually it will enable linking the void properties of the high-redshift universe with those at lower redshifts, which are better known.  相似文献   

6.
Using the Millennium N -body Simulation we explore how the shape and angular momentum of galaxy dark matter haloes surrounding the largest cosmological voids are oriented. We find that the major and intermediate axes of the haloes tend to lie parallel to the surface of the voids, whereas the minor axis points preferentially in the radial direction. We have quantified the strength of these alignments at different radial distances from the void centres. The effect of these orientations is still detected at distances as large as 2.2 R void from the void centre. Taking a subsample of haloes expected to contain disc-dominated galaxies at their centres we detect, at the 99.9 per cent confidence level, a signal that the angular momentum of those haloes tends to lie parallel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal is only detected in shells at the void surface  (1 < R < 1.07  R void)  and disappears at larger distances. This signal, together with the similar alignment observed using real spiral galaxies, strongly supports the prediction of the Tidal Torque theory that both dark matter haloes and baryonic matter have acquired, conjointly, their angular momentum before the moment of turnaround.  相似文献   

7.
Alignments of galaxy clusters (the Binggeli effect), as well as of galaxies themselves have long been studied both observationally and theoretically. Here, we test the influence of large-scale structures and tidal fields on the shapes and alignments of cluster-size and galaxy-size dark matter haloes. We use a high-resolution N -body simulation of a Λ cold dark matter (ΛCDM) universe, together with the results of Colberg, Krughoff & Connolly, who identified filaments connecting pairs of clusters. We find that cluster pairs connected by a filament are strongly aligned with the cluster–cluster axis, whereas unconnected ones are not. For smaller, galaxy-size haloes, there also is an alignment signal, but its strength is independent of whether the halo is part of an obvious large-scale structure. Additionally, we find no measurable dependence of galaxy halo shape on membership of a filament. We also quantify the influence of tidal fields and find that these do correlate strongly with alignments of haloes. The alignments of most haloes are thus caused by tidal fields, with cluster-size haloes being strongly aligned through the added mechanism of infall of matter from filaments.  相似文献   

8.
We investigate the effect of orientation-dependent selection effects on galaxy clustering in redshift space. It is found that if galaxies are aligned by large-scale tidal fields, then these selection effects give rise to a dependence of the observed galaxy density on the local tidal field, in addition to the well-known dependences on the matter density and radial velocity gradient. This alters the galaxy power spectrum in a way that is different for Fourier modes parallel to and perpendicular to the line of sight. These tidal galaxy alignments can thus mimic redshift space distortions (RSD), and thus result in a bias in the measurement of the velocity power spectrum. If galaxy orientations are affected only by the local tidal field, then the tidal alignment effect has exactly the same scale and angular dependence as the RSDs in the linear regime, so it cannot be projected out or removed by masking small scales in the analysis. We consider several toy models of tidal alignments and orientation-dependent selection, normalize their free parameter (an amplitude) to recent observations, and find that they could bias the velocity amplitude   f ( z ) G ( z )  by 5–10 per cent in some models, although most models give much smaller contamination. We conclude that tidal alignments may be a significant systematic error in RSD measurements that aim to test general relativity via the growth of large-scale structure. We briefly discuss possible mitigation strategies.  相似文献   

9.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

10.
We analyse the redshift space topology and geometry of the nearby Universe by computing the Minkowski functionals of the Updated Zwicky Catalogue (UZC). The UZC contains the redshifts of almost 20 000 galaxies, is 96 per cent complete to the limiting magnitude m Zw=15.5, and includes the Center for Astrophysics (CfA) Redshift Survey (CfA2). From the UZC we can extract volume-limited samples reaching a depth of 70  h −1 Mpc before sparse sampling dominates. We quantify the shape of the large-scale galaxy distribution by deriving measures of planarity and filamentarity from the Minkowski functionals. The nearby Universe shows a large degree of planarity and a small degree of filamentarity. This quantifies the sheet-like structure of the Great Wall, which dominates the northern region (CfA2N) of the UZC. We compare these results with redshift space mock catalogues constructed from high-resolution N -body simulations of two cold dark matter (CDM) models with either a decaying massive neutrino ( τ CDM) or a non-zero cosmological constant (ΛCDM). We use semi-analytic modelling to form and evolve galaxies in these dark matter‐only simulations. We are thus able, for the first time, to compile redshift space mock catalogues which contain galaxies, along with their observable properties, rather than dark matter particles alone. In both models the large-scale galaxy distribution is less coherent than the observed distribution, especially with regard to the large degree of planarity of the real survey. However, given the small volume of the region studied, this disagreement can still be a result of cosmic variance, as shown by the agreement between the ΛCDM model and the southern region of CfA2.  相似文献   

11.
Despite a history that dates back at least a quarter of a century, studies of voids in the large-scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void-finding algorithms, a fact that has so far got in the way of groups comparing their results without worrying about whether such a comparison in fact makes sense. Because of the recent increased interest in voids, both in very large galaxy surveys and in detailed simulations of cosmic structure formation, this situation is very unfortunate. We here present the first systematic comparison study of 13 different void finders constructed using particles, haloes, and semi-analytical model galaxies extracted from a subvolume of the Millennium simulation. This study includes many groups that have studied voids over the past decade. We show their results and discuss their differences and agreements. As it turns out, the basic results of the various methods agree very well with each other in that they all locate a major void near the centre of our volume. Voids have very underdense centres, reaching below 10 per cent of the mean cosmic density. In addition, those void finders that allow for void galaxies show that those galaxies follow similar trends. For example, the overdensity of void galaxies brighter than   m B =−20  is found to be smaller than about −0.8 by all our void finding algorithms.  相似文献   

12.
We analyse the dynamical properties of substructures in a high-resolution dark matter simulation of the formation of a Milky Way-like halo in a Λcold dark matter cosmology. Our goal is to shed light on the dynamical peculiarities of the Milky Way satellites. Our simulations show that about one-third of the subhaloes have been accreted in groups. We quantify this clustering by measuring the alignment of the angular momentum of subhaloes in a group. We find that this signal is visible even for objects accreted up to z ∼ 1, i.e. 8 Gyr ago, and long after the spatial coherence of the groups has been lost due the host tidal field. This group infall may well explain the ghostly streams proposed by Lynden-Bell & Lynden-Bell to orbit the Milky Way. Our analyses also show that if most satellites originate in a few groups, the disc-like distribution of the Milky Way satellites would be almost inevitable. This non-random assignment of satellites to subhaloes implies an environmental dependence on whether these low-mass objects are able to form stars, possibly related to the nature of reionization in the early Universe. With this picture, both the 'ghostly streams' and the 'disc-like configuration' are manifestations of the same phenomenon: the hierarchical growth of structure down to the smallest scales.  相似文献   

13.
赵飞  罗煜  韦成亮 《天文学报》2019,60(4):87-102
为了研究空洞的演化以及暗物质空洞和星系空洞的差别,使用一组高精度的N体模拟数据以及基于此给出的半解析模拟星系数据,在红移2.03到红移0之间取了6个红移的数据,并使用VIDE (Void Identification and Examination toolkit)算法来找空洞,对星系空洞和暗物质空洞的统计性质比如丰度、数目、大小、形状、叠加密度轮廓等演化的比较的结果表明,随着红移的减小,空洞的数目逐渐减少、内部密度逐渐变小、体积逐渐增大、空洞的形状越来越扁.暗物质空洞和星系空洞的数目、平均大小、平均椭率的比值与红移呈线性关系.此外,不论是暗物质空洞还是星系空洞,小的空洞密度比在分布上比大空洞的低,更容易贯通并合,演化效应更明显.另外由于星系总是形成于暗物质密度场的高密度区域,使其不容易示踪暗物质空洞的一些薄弱的墙结构,导致星系空洞提前贯通.而对于已经形成的星系空洞而言,即便是其墙上最薄弱的地方也往往堆积着显著的暗物质,使得星系的位置保持稳定,甚至形成新的星系,从而抑制星系空洞的贯通.整体上暗物质空洞的演化要比星系空洞的演化更加明显.  相似文献   

14.
In the 2dF Galaxy Redshift Survey, we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millennium simulation coupled with a semi-analytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by galaxies with   B J− 5 log  h < −20  and diameter larger than  10  h −1 Mpc  . We find a clear bimodality of galaxies inside voids and in the average field but with different characteristics. The abundance of blue cloud galaxies inside voids is enhanced. There is an indication of a slight blueshift of the blue cloud. Furthermore, galaxies in void centres have slightly higher specific star formation rates as measured by the η parameter. We determine the radial distribution of the ratio of early- and late-type galaxies through the voids. We find and discuss some differences between observations and the Millennium catalogues.  相似文献   

15.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

16.
为探索红移畸变对空洞性质的影响, 利用了一组星系形成半解析模拟星表数据, 采用VIDE (Void Identification and Examination toolkit)算法寻找真实空间和红移空间的宇宙学空洞, 根据空洞外围墙结构处的星系运动速度将空洞分为``塌缩型''和``膨胀型''. 结果表明: ``塌缩型''空洞所占比例会随着空洞的尺度变大而减少, ``膨胀型''空洞则与之相反, 两类空洞的平均有效半径在实空间中相差20%, ``塌缩型''空洞的平均径向密度轮廓显著高于``膨胀型''空洞. 利用成员星系将两种空间中的空洞进行匹配, 通过比较实空间和红移空间中空洞的数目分布, 发现实空间和红移空间中空洞的数目差异与空洞大小有关, 并且红移空间中有一半左右的空洞无法对应到实空间. 对匹配空洞, 红移畸变对``塌缩型''空洞的密度影响更大; 对未匹配空洞, 其密度轮廓与匹配空洞存在明显区别, 并且实空间中未匹配空洞其壳层星系向空洞内部运动的趋势更加明显.  相似文献   

17.
We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ 8, from peculiar velocities, cosmic microwave background (CMB) and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a 'biasing' relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Λ cold dark matter (ΛCDM) cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 σ level. This therefore justifies a joint analysis, in which we find a joint best-fitting point and 95 per cent confidence limits of     (0.17,0.39),     (0.64,0.86) and     (0.98,1.37). In terms of the natural parameter combinations for these data     (0.40,0.73),     (0.16,0.27). Also for the best-fitting point,     and the age of the Universe is 13.2 Gyr.  相似文献   

18.
The size distribution of minifilaments in voids has been derived from the Millennium Run halo catalogues at redshifts   z = 0, 0.5, 1  and 2. It is assumed that the primordial tidal field originated the presence of filamentary substructures in voids and that the void filaments have evolved only little, keeping the initial memory of the primordial tidal field. Applying the filament-finding algorithm based on the minimal spanning tree (MST) technique to the Millennium voids, we identify the minifilaments running through voids and measure their sizes at each redshift. Then, we calculate the comoving number density of void filaments as a function of their sizes in the logarithmic interval and determine an analytic fitting function for it. It is found that the size distribution of void minifilaments in the logarithmic interval,  d N /d log  S   , has an almost universal shape, insensitive to the redshift. In the short-size section, it is well approximated as a power law,  d N /d log  S ≈ S   , while in the long-size section it decreases exponentially as  d N /dlog  S ≈ exp(− S α)  . We expect that the universal size distribution of void filaments may provide a useful cosmological probe without resorting to the rms density fluctuations.  相似文献   

19.
Measurements of the Type Ia supernovae Hubble diagram which suggest that the Universe is accelerating due to the effect of dark energy may be biased because we are located in a 200–300 Mpc underdense 'void' which is expanding 20–30 per cent faster than the average rate. With the smaller global Hubble parameter, the Wilkinson Microwave Anisotropy Probe 5 data on cosmic microwave background (CMB) anisotropies can be fitted without requiring dark energy if there is some excess power in the spectrum of primordial perturbations on 100 Mpc scales. The Sloan Digital Sky Survey (SDSS) data on galaxy clustering can also be fitted if there is a small component of hot dark matter in the form of 0.5 eV mass neutrinos. We show however that if the primordial fluctuations are Gaussian, the expected variance of the Hubble parameter and the matter density are far too small to allow such a large local void. Nevertheless, many such large voids have been identified in the SDSS Luminous Red Galaxy survey in a search for the late integrated Sachs–Wolfe effect due to dark energy. The observed CMB temperature decrements imply that they are nearly empty, thus these real voids too are in gross conflict with the concordance Λ cold dark matter model. The recently observed high peculiar velocity flow presents another challenge for the model. Therefore, whether a large local void actually exists must be tested through observations and cannot be dismissed a priori.  相似文献   

20.
We investigate the figure rotation of dark matter haloes identified in Λ cold dark matter (CDM) simulations. We find that when strict criteria are used to select suitable haloes for study, five of the 222 haloes identified in our   z = 0  simulation output undergo coherent figure rotation over a  5 h −1 Gyr  period. We discuss the effects of varying the selection criteria and find that pattern speeds for a much larger fraction of the haloes can be measured when the criteria are relaxed. Pattern speeds measured over a  1 h −1 Gyr  period follow a lognormal distribution, centred at  Ωp= 0.2 h rad Gyr−1  with a maximum value of 0.94 h rad Gyr−1. Over a  5 h −1 Gyr  period, the average pattern speed of a halo is about  0.1 h rad Gyr−1  and the largest pattern speed found is  0.24 h rad Gyr−1  . Less than half of the selected haloes showed alignment between their figure rotation axis and minor axis, the exact fraction being somewhat dependent on how one defines a halo. While the pattern speeds observed are lower than those generally thought capable of causing spiral structure, we note that coherent figure rotation is found over very long periods and argue that further simulations would be required before strong conclusions about spiral structure in all galaxies could be drawn. We find no correlation between halo properties such as total mass and the pattern speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号