首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The neutrally stratified boundary layer over a smooth rough surface is consider. The turbulent flow is simulated using a finite-difference eddy-resolving model of the atmospheric boundary layer (ABL). The model includes different turbulence closure schemes and numerical approximations for advection components of the momentum balance equation. We investigate the quality of reproduction of spectral characteristics of the turbulent flow and the model’s capabilities to reproduce the observed profile of mean wind velocity near the rough surface. It is shown that the best result is obtained by coupling a numerical scheme of higher order of accuracy with a mixed closure scheme based on an adaptive estimation of the mixing length for subgrid-scale fluctuations. Here, we are able to reproduce the asymptotics of the fluctuation spectrum of the longitudinal component of wind velocity near the surface and within the boundary layer as well as the logarithmic profile of mean velocity near the surface.  相似文献   

2.
The dependence that the structure and intensity of turbulent and large-scale quasiordered eddies in the atmospheric boundary layer (ABL) have on the direction of geostrophic wind has been studied on the basis of a series of numerical experiments with a three-dimensional nonstationary model of high spatial resolution. The presence of the meridional component of the angular velocity of the Earth’s rotation results in a significant intensification of velocity fluctuations in a neutrally stratified turbulent flow during the easterly and northeasterly winds and in their decay during the westerly and southwesterly winds. This, in turn, results in significant variations in the mean velocity profile. It is shown that these variations are associated with the largest scale fluctuations and are comparable (in scale) to the depth of Ekman’s turbulent layer. It is found that, in the neutrally stratified ABL bounded in height and under stable stratification inside the ABL, the wind-direction dependence significantly decreases. The possibilities of parameterizing these effects in locally one-dimensional ABL models are discussed.  相似文献   

3.
The results obtained from both atmospheric and laboratory measurements and from LES data show that, in the stably stratified flows of the atmospheric boundary layer, turbulent mixing occurs at gradient Richardson numbers Ri g that significantly exceed one: the inverse turbulent Prandtl number Pr t −1 decreases with an increase in the thermal flow stability. The decreasing trend of the inverse turbulent Ptandtl number is reproduced in a stably stratified atmospheric boundary layer in agreement with measurement data with the aid of an improved three-parameter turbulence model. In this model, a modified model that takes into account the effect of stratification in the expression for the time scale of the scalar field is used for the pressure-scalar correlation.  相似文献   

4.
孙丹译  李爽 《海洋与湖沼》2020,51(6):1310-1319
大气和海洋是影响地球气候系统的两个重要因素,它们之间的相互作用是海洋和大气研究的重要课题,海气耦合模式则是研究海气相互作用的重要工具,而海气耦合模式重点考虑的参数是海气通量。针对传统的大尺度海气耦合模式缺少湍流尺度分析的问题,本文使用并行大涡模拟海气耦合模式(The Parallelized Large-Eddy Simulation Model,PALM),在小尺度上探究风速对海气通量及湍流动能收支(Turbulence Kinetic Energy Budget,TKE Budget)的影响,设置了5、10和15m/s三种地转风速度对大气边界层(Atmospheric Boundary Layer,ABL)和海洋混合层(Oceanic Mixed Layer,OML)进行海气耦合模拟。研究表明:海气通量的分布与风速大小密切相关,风速越大,净热通量和浮力通量相对越大,由于温度上升导致海水蒸发加剧,使得大气的淡水通量增大;海洋湍流动能收支各项在近海面处受风速影响较大,且随着深度加深而逐渐减弱。本研究初步展示了小尺度海气耦合模式在海气通量研究中的应用,对进行小尺度海气相互作用研究具有一定的意义。  相似文献   

5.
A recently developed fully explicit algebraic model of Reynolds stress and turbulent heat flux in a thermally stratified planetary atmospheric boundary layer without stratification has been used for a numerical study of the Ekman turbulent boundary layer over a homogeneous rough surface for different dimensionless surface Rossby numbers. A comparative analysis has been conducted for a closure model of the transport term in the prognostic equation of turbulent kinetic energy dissipation including third-order moments. Dependences of the total wind rotation angle on the Rossby number have been obtained. The calculated vertical profiles of mean velocity, turbulent stress, turbulent kinetic energy, surface-friction velocity, and boundary-layer height agree satisfactorily with observational and earlier obtained LES data.  相似文献   

6.
由于航海、海上开发作业等对海洋上风和海浪的预报提出越来越高的要求,而海浪、风暴潮等海洋水文要素的数值计算和预报,迫切需要解决海洋上风场的精确计算。但是,复杂的海面结构,大气稳定度的影响以及风、浪之间动量的交换等,使海上风的理论计算遇到很多困难,至今大部分工作是依靠统计方法。利用天气预报的形势场计算地转风或梯度风,以及它与海面摩擦、大气稳定度的经验订正关系。  相似文献   

7.
In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the “smooth” water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land–Lake Chudskoe–land–Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.  相似文献   

8.
This study investigates atmospheric responses to the directions of surface wind over the Kuroshio front in the East China Sea, using wintertime satellite-derived data sets. Composite maps of sea surface temperature, wind speed, precipitation, turbulent heat flux, surface wind divergence, and the curl of wind vectors above the atmospheric boundary layer are depicted based on the classification of intense northeasterly (along the front) and northwesterly (across the front) winds over the East China Sea. When northeasterly winds prevail, considerable precipitation occurs on the offshore side of the Kuroshio front, in contrast to periods when northwesterly winds prevail. First, the northeasterly winds strengthen above the front because of the downward transfer of momentum from the fast-moving air at higher levels and/or an adjustment of sea level pressure over the oceanic front, although the process by which the influence of the Kuroshio penetrates beyond the marine atmospheric boundary layer remains unclear. Second, a cyclonic vortex forms above the marine atmospheric boundary layer (at 850-hPa height) on the offshore side of the front, and thereafter, surface wind convergence via Ekman suction (hence, enhanced precipitation) occurs over the East China Sea shelf breaks. The northeasterly winds blow over the East China Sea when the Aleutian Low retreats to the east and when high sea level pressure covers the northern Sea of Japan.  相似文献   

9.
Results of measurements of the atmospheric turbulence in the layer between 1.5 and 21 m above sea level and the drag coefficient of the sea surface as the wind blows from a 4-km-long mountainous slope with a mean inclination of 11° are presented. The measurements of wind-speed profiles and its fluctuations at several levels, waves, and the main meteorological parameters were carried out in autumn 2005 and 2008 from a stationary platform located in the Black Sea at a distance of approximately 1 km from the southern coast of Crimea. It is shown that during weak synoptic wind a low-level wind jet develops at night over the sea with a maximum velocity up to 5–6 m/s at a level of approximately 6 m over the sea induced by the katabatic wind over the coastal slope. According to the approximate estimates, the horizontal scale of the low-level jet can reach a few tens of kilometers. This flow is characterized by the dissipation rate of the turbulence energy independent of height and low-frequency velocity fluctuations related to the gravity waves and advection of turbulence from the coast. It is shown that the lower part of the boundary layer (up to a height of 3 m) is adjusted to the sea-surface roughness. The dependencies of the drag coefficient on the wind speed or wave age are steadier than in the data for the open sea. However, the age of the waves is not a universal parameter at long and short fetches.  相似文献   

10.
This paper discusses a simplified model for the evolution of the atmospheric planetary boundary layer overlying a thermal front in the sea. The model provides local values of the friction/heat transfer geostrophic coefficients and the direction of surface wind stress, as well as the wind/temperature profiles at any point on the front. With the running over a warm front, the baroclinicity of the internal boundary layer leads to the generation of a near-surface current of air directed down the front. The model can be used to interpret radar imagery of the sea surface with the purpose of determining its mesoscale variability. Translated by Vladimir A. Puchkin.  相似文献   

11.
A wave theory of propagation of an acoustic pulse in a moving stratified atmospheric layer above the ground with a finite impedance of an underlying ground surface is developed. The shapes of acoustic signals in a near-ground atmospheric waveguide, which are formed due to temperature inversion and a vertical shear of the wind velocity, are calculated based on this theory. These signals are compared with those measured during the experiments where vertical profiles of the wind velocity and temperature in an atmospheric boundary layer have been continuously controlled using a sodar, a temperature profile meter, and acoustic anemometers or thermometers mounted on a 56-meter-high mast. The joint action of a near-ground acoustic waveguide, the impedance of the underlying surface, and a vertical layered structure of the boundary atmospheric layer on a signal shape far from the acoustic source are studied.  相似文献   

12.
Effect of air-sea temperature difference on the momentum exchange between air and sea for fetch-limited casesChengZhanandWuSh...  相似文献   

13.
青岛地区海雾多发,观测表明海雾对沿海地区影响范围不尽相同,特别是海雾影响内陆的机理尚缺乏研究。本文利用观测资料及数值模式统计了青岛地区4月-7月海雾分布特征,并对不同影响范围海雾典型个例进行对比分析,结果表明:海雾发生日数自沿海向内陆递减。胶州湾沿岸雾日数比黄海沿岸明显减少,胶州湾东北部的雾日数要少于胶州湾西北部。海雾多发生于高空形势稳定,低层偏南流场的天气条件下。大气边界层内逆温层的的范围大致影响着海雾的分布。只影响沿海的海雾,地面为偏南风,风速在3~8 m/s之间,内陆风力减弱不明显。500 m以下大气边界层内风速切变大。湍流作用使海雾向内陆推进过程中倾斜抬升为低云,地面雾区减弱。能够影响内陆地区的海雾,多出现在地面风力较弱的情况之下,大部分在1~3 m/s之间。500 m以下大气边界层内风速切变小,大气边界层内湍流强度不强,使沿海到内陆的逆温层能够始终维持,沿海海雾在弱南风影响下延伸影响内陆地区。  相似文献   

14.
Reverse tip jets are strong low-level winds with easterly component that form near the southern tip of Greenland. In the present study, a reverse tip jet case which occurred from 21 to 22 December 2000 was examined to clarify its fine structure using a numerical model with a horizontal resolution of 3 km. The reverse tip jet, showing the supergeostrophic wind speed with a maximum wind speed in excess of 45 m s−1, extended from the east coast of Greenland to the west of Cape Farewell with anticyclonic curvature. A cloud free region coincided with the jet indicated that there was a mesoscale downdraft. Along the eastern edge of the jet, a banded cloud formed between the upstream easterly wind and the colder northerly wind that is a part of the jet and is located along the east coast. This cloud was associated with large gradients in surface wind speed, temperature, moisture, and heat flux. A maximum surface total heat flux of 300 W m−2 coincided with the location of the jet. It is suggested that the orographic deflection by Greenland's large-scale topography as well as small-scale downslope winds behind mountains with fiords causes the reverse tip jet.  相似文献   

15.
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.  相似文献   

16.
秦曾灏 《海洋学报》1980,2(3):24-37
近十余年来,海洋和大气相互作用这一课题日益受到人们的关注。从海-气边界层结构以及通过海面的物理量和化学量输送机制的研究到大尺度海洋和大气相互作用的研究都取得了可喜的成果。此外,还从海洋和大气相互作用的观点探索了风暴潮预报的新的可能途径[2]。然而,由于问题的复杂性,通过海面以及海-气边界层的物理量的小尺度输送机制迄未得到澄清,企图从本质上改善大尺度海洋和大气相互作用的理论是不现实的。  相似文献   

17.
Using large eddy simulation (LES) incorporating the effect of the horizontal component of the earth’s rotation vector, we studied the seafloor turbulent boundary layer to investigate the dependence of the boundary layer thickness on the overlying geostrophic flow orientation. The thickest boundary layer appears for the westward geostrophic flow: it is almost twice that of the eastward flow. The turbulent disturbances in the boundary layer are elongated slightly leftward relative to the geostrophic flow. Linear stability analysis for the Ekman’s spiral flow showed that the growth rate is maximum for the westward geostrophic flow and the unstable roll-like mode appears, which points slightly leftward relative to the geostrophic flow. These properties correspond to the feature near the bottom of the developed turbulent layer.  相似文献   

18.
Both horizontal and vertical heat exchanges and feedbacks between air temperature and anthropogenic heat fluxes significantly affect the characteristics of the urban heat island (UHI). The UHI intensity depends, in particular, on the ratio between the scales LA (area of anthropogenic forcing) and Lγ (distance passed by an air particle of the oncoming stably stratified flow before its temperature approaches air temperature within the UHI). Both advection and feedback effects may be estimated based on the equation for the local heat balance of the underlying surface. In this case, heat advection is taken into account by calculating temperatures individually for the atmospheric boundary layer and the surface of the urban canopy layer. The estimates show that the asymptotics of strong advection is more characteristic of a typical city. However, under weak winds, with consideration for the feedback between air temperature and anthropogenic heat flux, some deviations from this asymptotics are probable.  相似文献   

19.
The dynamics of the wind-driven circulations and surface transport processes in Suruga Bay have been examined by performing numerical experiments. While strong winds exist outside the bay, the winds inside the bays are greatly reduced, which generates a strong wind stress curl in winter and autumn. In particular, in winter, a strong positive curl region is located across the bay mouth, and a strong surface circulation with counterclockwise rotation is generated beneath it. The circulation is nearly geostrophic, but is not affected by the bottom topography in the deep bay. It is suggested that intense surface water exchange through the bay mouth occurs in winter, whereas it is not active in the other seasons when no significant vorticity is supplied on the bay mouth from the atmosphere. Moreover, we propose a hypothesis that the atmospheric wind stress curl will cause the frequent appearance of the counterclockwise circulation in winter in the real ocean.  相似文献   

20.
A modified three-parameter model of turbulence for a thermally stratified atmospheric boundary layer (ABL) is presented. The model is based on tensor-invariant parametrizations for the pressure-strain and pressure-temperature correlations that are more complete than the parametrizations used in the Mellor-Yamada model of level 3.0. The turbulent momentum and heat fluxes are calculated with explicit algebraic models obtained with the aid of symbol algebra from the transport equations for momentum and heat fluxes in the approximation of weakly equilibrium turbulence. The turbulent transport of heat and momentum fluxes is assumed to be negligibly small in this approximation. The three-parameter E ? ε ? 2> model of thermally stratified turbulence is employed to obtain closed-form algebraic expressions for the fluxes. A computational test of a 24-h ABL evolution is implemented for an idealized two-dimensional region. Comparison of the computed results with the available observational data and other numerical models shows that the proposed model is able to reproduce both the most important structural features of the turbulence in an urban canopy layer near the urbanized ABL surface and the effect of urban roughness on a global structure of the fields of wind and temperature over a city. The results of the computational test for the new model indicate that the motion of air in the urban canopy layer is strongly influenced by mechanical factors (buildings) and thermal stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号