首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings (1) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (2) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal–mechanically induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal–mechanically induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal–mechanically induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.  相似文献   

2.
Summary Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern.During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm.The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.  相似文献   

3.
Lined Circular Tunnels in Elastic Transversely Anisotropic Rock at Depth   总被引:1,自引:1,他引:0  
Closed-form solutions for displacements and stresses of both the liner and the rock are presented for a deep circular tunnel excavated in transversely anisotropic rock above or below the water table subjected to static or seismic loading. The solutions are obtained with the assumption of elastic response of rock and liner, tied contact between rock and liner, impermeable liner, plane strain conditions along the tunnel axis and simultaneous excavation, and liner installation. The liner of a tunnel placed below the water table must support, in addition to the rock stresses, the full water pressure, while a tunnel located above the water table must support only the rock pressures. The solutions presented for static loading show, however, that displacements and stresses of the liner and rock are the same when the tunnel is placed above or below the water table as long as the total far-field stresses are the same. With rapid loading, e.g. seismic loading, excess pore pressures may be generated in saturated rock, which induce a different response than that of a tunnel excavated in dry rock. The analyses indicate that stresses and displacements are more uniform when excess pore pressures are produced, which seems to indicate that pore pressure generation tends to reduce non-uniform response in anisotropic rock.  相似文献   

4.
地应力与岩体模量关系的理论及试验研究   总被引:1,自引:0,他引:1  
岩体模量(弹性模量及变形模量)是工程岩体力学特性的基础参数之一,研究地应力状态与岩体模量之间的关系具有重要意义.基于静弹性热力学模型原理,结合弹性理论,推导了水平主应力与岩体性质参数的定量关系,并对地应力与岩体模量的关系进行了探讨.在此基础上,以赣龙铁路梅花山隧道为依托,开展了围岩应力及岩体模量参数的现场测试工作,并将实测成果与理论分析进行对比.结果表明:当埋深影响较小时,花岗岩中的水平主应力与岩体模量呈线性正相关关系;当埋深相差较大时,深度对地应力及岩体模量的影响均不可忽略,水平主应力与岩体模量一般呈非线性关系,需要进一步研究;对花岗岩中的岩体弹性模量和变形模量与水平主应力之间的相关性进行对比发现,岩体变形模量与水平主应力的相关性更好.研究成果可为工程岩体力学参数取值及评价提供借鉴.  相似文献   

5.
I Van der Molen   《Tectonophysics》1981,73(4):323-342
Measurements are presented of volume changes in granite during room-temperature compression to 100, 200 and 300 MPa confining pressure followed by temperature increase to 900°C. Comparison with thermal expansion and compressibility data for the constituent minerals allows changes in porosity to be estimated. Under confining pressure, porosity is found to decrease with heating to 200°C through expansion of the minerals into cracks which are thought to be related to the geological cooling history of the rock. Between 200°C and 840°C porosity increases as a result of differential thermal expansion of the constituent minerals, but crack opening is increasingly suppressed at higher confining pressures. Extrapolation of the results indicates that differential thermal expansion can no longer cause crack opening in dry granite at confining pressures in excess of 450 MPa. The quartz α-β transition temperature in granite is marked by a kink in the thermal expansion curve of the rock, and it is found to increase by 60°C–70°C per 100 MPa confining pressure, as opposed to the published value of 26°C per 100 MPa for single crystals of quartz. Equations are presented which allow calculation of the effects of confining pressure and temperature on the stresses and displacements in and around a spherical inclusion embedded in a matrix of different elasticity and thermal expansion. The theory, together with a simple self-consistent model for granite, accounts semiquantitatively for the observations of thermal expansion and the effect of confining pressure thereon, and for the observed α-β transition temperatures for quartz in granite.  相似文献   

6.
This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elasto-plastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because of decreasing thermal stress.  相似文献   

7.
Summary. The liner of a pressure tunnel needs to be designed such that it can withstand the loads from the ground, the internal pressure, and minimize the development of significant pore pressures at the liner-ground interface. Pore pressures behind the liner reduce the effective stresses in the ground immediately in contact with the liner and can ultimately produce loss of support from the ground. Deformations and loads of the liner are intimately connected to the interplay that exists between liner, ground, and pore pressures in the ground. A closed-form analytical solution has been derived that accounts for the inter-relation between liner, ground, and pore pressures. Elastic response of the liner and ground, and plane strain conditions at any cross-section of the tunnel are assumed. The solution shows that stresses in the ground depend on the following dimensionless factors: relative stiffness of the ground and liner, ground Poisson’s ratio, surface slope angle, coefficient of earth pressure at rest, relative tunnel depth, and magnitude of the pore pressure behind the liner relative to the internal pressure. The minimum ground effective tangential stresses at the ground-liner interface increase with the relative stiffness of the liner, with the coefficient of earth pressure at rest, and with tunnel depth. They decrease with increasing surface slope angle and pore pressures behind the liner. As leakage through the liner increases, the pore pressures in the ground increase. This results in a decrease of effective radial and tangential stresses in the ground while displacements and loads of the liner are relatively less affected.  相似文献   

8.
张玉军  徐刚 《岩土力学》2013,34(Z1):430-436
假定一个核废料地质处置库位于具有一定水头的饱和节理岩体中,开挖完闭施作系统锚杆和喷混凝土支护。对坑道建造和一个50年期的热-水应力(T-H-M)耦合运营过程,使用UDEC程序进行数值模拟,分析无、有支护时近场围岩中的应力、变形、塑性区、温度、渗流的变化状态,以及不同场(温度、渗流、应力)耦合条件下的锚杆和喷混凝土中的承载情况。结果显示,喷混凝土和系统锚杆支护不仅具有常规的支护功能,并且可阻滞地下水从坑道表面的自由渗出,使得围岩中塑性区减小,裂隙水压力和温度升高;相比于应力单场作用的情况,在热-水-力耦合的条件下洞室围岩的稳定性下降,支护结构的受力状况变差。  相似文献   

9.
Thermal defects in ionic materials can have important effects on their thermal expansion at high temperatures. Earlier treatments of thermal expansion generally have neglected or not considered such effects. Here an analytical expression for the thermal defect contribution and its dependence on pressure is derived. We show that such contributions, which are significant at high temperature and atmospheric pressure, become negligible at pressures above approximately 0.25 to 0.35 of the bulk modulus at standard conditions. At very high pressure, based on Birch's (1968) relationship between high and low pressure thermal expansion, and assuming αK Tis independent of pressure, NaCl thermal expansion can be calculated within the constraints of a semi-empirical quasi-harmonic perfect crystal model. The calculations are compared with available theoretical and experimental values over an extended temperature/pressure regime. The method should have broad applicability for other ionic crystals.  相似文献   

10.
吕爱钟  覃媛  陈虹宇 《岩土力学》2014,35(Z1):42-48
基于平面弹性复变函数中的保角变换方法,推导出带有衬砌的非圆形隧洞在原始地应力作用下的应力解析解。根据衬砌内边界的应力边界条件及围岩衬砌接触面上的应力和位移连续条件,获得求解围岩和衬砌解析函数的基本方程,计算了围岩和衬砌中的应力和位移。在求解过程中,考虑了支护滞后于开挖的力学过程,并认为围岩和衬砌之间紧密接触,不会相互分开和相对滑动。以马蹄形隧洞为例,获得了围岩开挖边界和衬砌内外边界的切向应力及围岩与衬砌接触面上的接触应力分布规律,并与ANSYS数值方法结果对比,算例表明两种方法的计算结果吻合很好。  相似文献   

11.
The construction of underground tunnels is a time-dependent process. The states of stress and strain in the ground vary with time due to the construction process. Stress and strain variations are heavily dependent on the rheological behavior of the hosting rock mass. In this paper, analytical closed-form solutions are developed for the excavation of a circular tunnel supported by the construction of two elastic liners in a viscoelastic surrounding rock under a hydrostatic stress field. In the solutions, the stiffness and installation times of the liners are accounted for. To simulate realistically the process of tunnel excavation, a time-dependent excavation process is considered in the development of the solutions, assuming that the radius of the tunnel grows from zero until its final value according to a time-dependent function to be specified by the designers. The integral equations for the supporting pressures between rock and first liner are derived according to the boundary conditions for linear viscoelastic rocks (unified model). Then, explicit analytical expressions are obtained by considering either the Maxwell or the Boltzmann viscoelastic model for the rheology of the rock mass. Applications of the obtained solutions are illustrated using two examples, where the response in terms of displacements and stresses caused by various combinations of excavation rate, first and second liner installation times, and the rheological properties of the rock is illustrated.  相似文献   

12.
Characteristic Curves for Deep Circular Tunnels in Poroplastic Rock   总被引:2,自引:1,他引:1  
A complete analytical solution for an axisymmetric deep tunnel excavated in a saturated poroplastic rock is presented. Results are found for short- and long-term analyses and for different drainage conditions at the rock–liner interface. In the derivation, the following assumptions are made: (1) circular cross-section, (2) deep tunnel, (3) plane strain conditions on a cross-section perpendicular to the tunnel axis, (4) axisymmetric loading, (5) the rock is saturated, homogeneous and isotropic, and (6) the rock is elastic-perfectly plastic with brittle failure and non-associated flow rule. The results obtained indicate that, if the rock remains elastic during construction, the stresses of the liner and the tunnel deformations are the same for short- and long-term conditions and are independent of the drainage conditions at the rock–liner interface and on the magnitude of Biot’s parameter α. If the rock yields, the stresses in the liner and the tunnel deformations strongly depend on the type of analysis. Effective radial and tangential stresses inside the rock decrease with Biot’s parameter α, while radial displacements increase. The response of the liner in terms of stresses and deformations strongly depends on its stiffness relative to the rock, yielding of the rock, groundwater and drainage conditions, and construction operations, while it is somewhat less sensitive to the rock’s poroplastic properties. Stresses and deformations inside the rock, however, show a much stronger dependency.  相似文献   

13.
通过抗爆模型试验,研究了爆炸平面波作用下大跨度毛洞和锚喷衬砌支护洞室的受力变形和稳定状态。介绍了模型试验原理及方法,根据试验实测数据分析了洞室围岩的受力特征、洞壁的运动变形特征、洞室的破坏形态及承载能力等。研究表明:设计工况和超载工况下,锚喷衬砌支护洞室侧墙部位垂直应力、拱顶加速度正峰值、拱顶位移峰值及残余值、洞壁环向应变峰值均明显小于毛洞;超载试验后,毛洞破坏严重,丧失了承载能力,而锚喷衬砌支护洞室破坏明显轻微,承载能力可提高约60%。  相似文献   

14.
张玉军  张维庆 《岩土力学》2014,35(Z2):556-564
由双重孔隙-裂隙介质热-水-应力耦合模型退化为单一孔隙介质模型,将其与岩体扩容梯度引入笔者所研制的二维有限元程序中,使用Mohr-Coulomb准则,计入塑性扩容对岩体孔隙率及渗透系数的影响,针对一个假设的实验室尺度且位于饱和孔隙介质岩体中的高放废物地质处置库模型,拟定不同扩容梯度值的5种工况,进行4年处置时段的数值模拟,考察了岩体中的温度、正应力、塑性区、孔隙率及渗透系数、孔隙水压力和地下水流速的变化、分布情况。结果主要显示,相比于不考虑扩容梯度的工况,考虑扩容梯度工况的正应力、孔隙率及渗透系数、孔隙水压力和地下水流速等的分布与塑性区的分布有明显的对应关系,呈现了某种"剪切带效应";正应力量值、塑性区面积、孔隙率及渗透系数、孔隙水压力、地下水流速等均随所取扩容梯度值的变大而增加。  相似文献   

15.
This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr–Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.  相似文献   

16.
The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.  相似文献   

17.
微观结构超压机制与超高压矿物的形成   总被引:3,自引:0,他引:3  
武红岭  池顺良 《岩石学报》2003,19(4):739-744
提出了由岩石及矿物的结构形态、岩石力学性质不同引起的微结构超压机制。对影响结构超压的诸因素(弹性参数、热物理性质)进行了数值模拟实验和定量分析。研究结果表明,结构压力对超高压岩石、矿物的形成具有重要的意义。结构压力随弹性模量差异、围限压力、温度改变量及热膨胀系数差异的增加而增大。在岩石、矿物的弹性模量相差5倍的条件下,结构附加压力可达到静岩压力的45%左右。如果再考虑热膨胀系数不同及降温引起的附加压力,在较一般的情况下,60公里左右深处就有可能具备柯石英等超高压矿物形成的下限压力条件。  相似文献   

18.
张玉军  杨朝帅  徐刚 《岩土力学》2014,35(5):1461-1469
在自主研制的孔隙介质热-水-应力耦合有限元程序中引入Taron等提出的颗粒聚集体的压力溶解模型,针对一个假设的实验室尺度且位于非饱和石英颗粒聚集岩体中的高放废物地质处置模型,拟定两种计算工况:(1)孔隙率和渗透系数是压力溶解的函数;(2)孔隙率和渗透系数均为常数,进行4 a处置时段的数值模拟,考察了岩体中的温度、颗粒界面水膜及孔隙中的溶质浓度、迁移和沉淀质量、孔隙率及渗透系数、孔隙水压力、地下水流速和应力的变化、分布情况。研究结果表明:工况1计算终了时,压力溶解使得孔隙率和渗透系数分别下降到初始值的43%~54%、4.4%~9.1%。在核废料释热温度场的作用下,工况1、2中的负孔隙水压力分别为初始值的1.00~1.25倍、1.00~1.10倍,前者表现了压力溶解的明显影响;两种工况的岩体中的应力量值及分布基本相同。  相似文献   

19.
Construction of the Chhibro—Khodri Tunnel of the Yamuna Hydroelectric Scheme near Dehradun in the lower Himalayan region has been delayed by over six years due to problems associated with highly squeezing rock masses encountered unexpectedly in recurring faulted zones.

Attempts to measure tectonic slip along a fault zone running across the tunnel have been reviewed. The suitability of a “flexible lining” provided in this zone has been evaluated in view of the region being seismically active.

A tunnel instrumentation programme was implemented to evolve a flexible support system capable of reducing rock loads to manageable levels in highly squeezing rock conditions. Use of “loose” backfill with steel-arch supports has shown promise in this direction.

Observed support pressures have been compared with the estimated values for evaluating the empirical and theoretical approaches of rock-load assessment in the squeezing rock conditions. The elasto-plastic theory has yielded reliable estimates of rock pressures.  相似文献   


20.
裂隙岩体介质THM耦合问题中的渗透特性研究   总被引:4,自引:0,他引:4  
在前人就热、液、力三因素各自影响裂隙岩体渗透特性的研究和本文所进行的温度及附加应力作用下单裂隙岩样实验的基础上.综合分析了裂隙岩体THM耦合过程,以裂隙结构面的开度、岩体裂隙数(包括受温度影响开通裂隙数)、裂隙连通率、附加应力、剪切膨胀为研究对象.建立具有THM耦合特性的裂隙岩体渗流系数张量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号