首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sutter's Mill C‐type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.  相似文献   

2.
Vagn Buchwald (Fig.  1 ) was born in Copenhagen where he attended school and college. Then after 18 months of military service, he assumed a position at the Technical University of Copenhagen. A few years later, he was presented with a piece of the Cape York meteorite, which led to an interest in iron meteorites. Through a campaign of informed searching, Vagn found the 20 ton Agpalilik meteorite (part of the Cape York shower) on 31st July 1963 and by September 1967 had arranged its transport to Copenhagen. After sorting and describing the Danish collection, which included application of the Fe‐Ni‐P phase diagram to iron meteorite mineralogy, Vagn was invited to sort and describe other iron meteorite collections. This led to a 7 yr project to write his monumental Handbook of Iron Meteorites. Vagn spent 3 yr in the United States and visited most of the world's museums, the visit to Berlin being especially important since the war had left their iron meteorites in bad condition and without labels. During a further decade or more of iron meteorite research, he documented natural and anthropomorphic alterations experienced by iron meteorites, discovered five new minerals (roaldite, carlsbergite, akaganeite, hibbingite, and arupite); had a mineral (buchwaldite, NaCaPO4) and asteroid (3209 Buchwald 1982 BL1) named after him; and led expeditions to Chile, Namibia, and South Africa in search of iron meteorites and information on them. Vagn then turned his attention to archeological metal artifacts. This work resulted in many papers and culminated in two major books on the subject published in 2005 and 2008, after his retirement in 1998. Vagn Buchwald has received numerous Scandinavian awards and honors, and served as president of the Meteoritical Society in 1981–1982.  相似文献   

3.
4.
Although meteorites are now considered as scientific objects, they still bear a strong and powerful symbolic meaning due to their extraterrestrial provenance. The present article focuses on their legal status, in other words the collection of rules, very diverse in nature, which are applicable to them. Despite a growing international market, the question of meteorites is often ignored or regarded as a detail in international relations and is rarely taken explicitly into account in negotiations and treaties. This relative neglect explains why a non‐State player, the Meteoritical Society, has taken methodological initiatives into meteoritic science and has effectively become a regulator of meteorite naming and acceptance, with a global scope. We show that to understand the legal status of meteorites, it is necessary to consider them under the prism of public international law, transnational law, and national law. We conclude that, despite the universality of meteorites as extraterrestrial objects, the variability of legal rules applicable to meteorites depending onto which territory they fall or where they are found. We note, however, that there is a trend toward regulatory uniformity in the scientific analysis of meteorites, which frames the practices of researchers and regulates traders’ activities. Finally, we contend that a meteorite remains a badly defined legal object, because it can be viewed under many angles: as an object susceptible to private appropriation, as a “common thing” (res communis), or as an element of national heritage.  相似文献   

5.
The author carried out a study of pulverised cosmic matter extracted from the soil at the fall locality of the Sikhote Alin iron meteorite shower. Three forms of dust were distinguishable: meteoritic, sharp-angled, irregular particles from the break-up of the meteorite; meteoric, spherical, magnetic particles from ablation; and micro meteorites. Meteoritic and meteoric dust was also discovered in the soil of the regions of fall of the Boguslavka and Yardymly iron meteorites. Experiments made by the author for the purpose of obtaining artificial meteoric dust from meteoritic matter of various types have shown that the meteoric dust obtained from stony meteorites is composed of spherules similar to those extracted from the soil in the areas of fall of the Sikhote Alin, Boguslavka and Yardymly iron meteorites. Cosmic dust, the particles of which are usually called micrometeorites, due to their small size, are not subjected to the influence of temperature as they pass through the Earth's atmosphere and they reach the Earth's surface unaltered. It is proposed that meteoric and cosmic dust comprises the largest part of the cosmic matter falling onto the Earth:  相似文献   

6.
Abstract— The remarkable fact about the Mazapil meteorite is that it fell on the same night, in 1885, that the Andromedid meteor shower underwent a spectacular outburst. The simultaneity of these two events has driven speculation ever since. From ?1886 to ?1950 the circumstances of the Mazapil fall were taken, by a number of researchers, as the paradigm that demonstrated the fact that comets were actually swarms of meteoritic boulders. Beginning ?1950, however, most researchers began to adopted the stance that the timing of the Mazapil fall was nothing more than pure coincidence. The reason behind this change in interpretation stemmed from, amongst other factors, the fact that none of the prominent annual meteor showers could be clearly shown to deliver meteorites. Also, with the introduction of the icy‐conglomerate model for cometary nuclei, by F. Whipple in the early 1950s, it became increasingly clear that only exceptional circumstances would allow for the presence of large meteoritic bodies in cometary streams. Further, by the mid 1960s it had been shown that meteorites could, in fact, be delivered to the Earth from the main belt asteroid region via gravitational resonances. With the removal of the dynamical “barrier” against the delivery of meteorites from the asteroid region, the idea that the Mazapil meteorite could have been part of the Andromedid stream fell into complete disfavor. This being said, we nonetheless present the results of a study concerning the possible properties of the parent object to the Mazapil meteorite based upon the assumption that it was a member of the Andromedid stream. This study is presented to illustrate the point that while cometary showers do not yield meteorites on the ground, this does not, in fact, substantiate the argument that no meteoritic bodies reside in cometary streams. Indeed, we find no good reason to suppose that an object with the characteristics of the Mazapil meteorite could not have been delivered from the Andromedid stream. However, we argue that upon the basis of the actual reported observations and upon the scientific maxim of minimized hypothesis and least assumption it must be concluded that the timing of the fall of the Mazapil meteorite and the occurrence of the Andromedid outburst were purely coincidental.  相似文献   

7.
As a child Frederick C. Leonard displayed such a precocious aptitude for astronomy that he became known as “Chicago's Boy Astronomer.” But within a decade after receiving his Ph.D., his interests had turned to meteorites. He persuaded Harvey Nininger to help him found the Society for Research on Meteorites, later renamed The Meteoritical Society, in 1933—a time when the study of meteorites was not considered a worthy pursuit of serious scientists. He nurtured the Society and held it together through the Great Depression, World War II, a destructive feud, and a significant personal and family crisis. He obtained legitimacy and affiliation for the Society with mainstream scientific organizations. He was its first President, and he was Editor of its publications from the Society's founding until a year before his death in 1960. Through it all he was a persistent advocate for the importance of the study of meteorites and the legitimacy of meteoritics as a valuable field of science.  相似文献   

8.
Abstract– In this interview, Joseph Goldstein ( Fig. 1 ) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstätten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650–400 °C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe‐Ni‐P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008.
Figure 1 Open in figure viewer PowerPoint Joseph Goldstein.  相似文献   

9.
On Christmas Day 1704, at 17 h (UT), a meteorite fell in Terrassa (about 25 km NW of Barcelona). The meteorite fall was seen and heard by many people over an area of several hundred kilometers and it was recorded in several historical sources. In fact, it was interpreted as a divine sign and used for propaganda purposes during the War of the Spanish Succession. Although it was believed that meteorite fragments were never preserved, here we discuss the recent discovery of two fragments (49.8 and 33.7 g) of the Barcelona meteorite in the Salvador Cabinet collection (Botanic Institute of Barcelona). They are very well preserved and partially covered by a fresh fusion crust, which suggests a prompt recovery, shortly after the fall. Analysis of the fragments has revealed that the Barcelona meteorite is an L6 ordinary chondrite. These fragments are among the oldest historical meteorites preserved in the world.  相似文献   

10.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

11.
A brilliant smoking meteor appeared in a clear sky in bright sunlight at 11 a.m., July 24, 1922 near Wynyard, Saskatchewan, Canada. The sight and thunderous sounds were witnessed by many hundreds of people in the rural district but no craters or meteorites were found at that time. Investigation and interviews with surviving witnesses in 1981 indicated a defined area near Big Quill Lake in which a meteorite may have fallen. Field investigation led to the Wynyard meteorite which had been found by a farmer sometime in the late 1960's at 104° 11'W 51°33'N. The Wynyard meteorite is a chondrite weighing 3.5 kg. It is moderately weathered and it may or may not have been part of the 1922 fall.  相似文献   

12.
Abstract— Harvey Nininger successfully petitioned the American Astronomical Society to pass a motion in support of nationalizing Meteor Crater, Arizona, at its June 1948 meeting. He alleged that the Barringer family, who held title to the crater, was depriving American citizens of its scenic beauty and scientific value. He then reportedly went on to make the unauthorized‐and false‐claim that the family would be receptive to a fair purchase offer for the crater. The Barringers, who had not been given advance warning of the petition and were not present at the meeting, felt ambushed. They quickly and forcefully rebutted Nininger's allegations, made it clear they had no intention of relinquishing their title to the crater, and terminated his exploration rights. What led Nininger to such a curious and self‐defeating act? Based on our reading of his voluminous personal correspondence, we conclude that it was rooted primarily in his complex relationship with Frederick Leonard and Lincoln LaPaz, and his desire to establish a national institute for meteoritical research‐with them, originally, but after a serious falling out, on his own. Prevented from moving his American Meteorite Museum to the crater rim, Nininger wondered what would happen if the crater was nationalized and made into a public park, with an accompanying tourist center and museum. With characteristic élan, he could picture himself at its head, with a secure salary and adequate space to exhibit his meteorite collection.  相似文献   

13.
Meteorite camera networks have provided reliable data on typical orbits for meteorites. Using an adopted distribution of 20 orbits we determine the relative rates of meteorite falls over the surface of the earth taking account of the important effects due to the earth's gravity. The data are then used to study the expected variation in rates as a function of daylight, twilight or night conditions; time of day; season of the year; and geographic latitude. The rates of meteorite falls have a deep minimum near the area of the earth facing the earth's apex but a surprisingly broad maximum on the opposite side, facing the antapex. Twilight rates are lower than average and nighttime rates 3% higher than daytime rates. Minimum rates occur near 6h local time and there is a broad maximum from noon to midnight. Rates are highest near the beginning of spring for either hemisphere and lowest near the beginning of autumn. The decline in rates with increasing latitude is quite moderate. The existing camera networks observe average fall rates at night which are very close to the average rate over the whole earth for the whole year.  相似文献   

14.
The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of “organized” elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon‐rich compounds, which help address the question of organo‐synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent‐body within the first few million years of the solar system; their study is essential to our understanding of fluid–rock interaction in asteroids and comets. Finally, the Orgueil meteorite probably originated from a volatile‐rich “cometary” outer solar system body as indicated by its orbit. Because it bears strong similarities to other carbonaceous chondrites that originated on dark asteroids, this cometary connection supports the idea of a continuum between dark asteroids and comets.  相似文献   

15.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   

16.
On February 13, 2023, a huge fireball was visible over Western Europe (fireball event 2023 CX1). After the possible strewn field was calculated, the first of several recovered samples, with a mass of about 100 g, was discovered just 2 days after the fireball event on the ground of the village of Saint-Pierre-le-Viger. Meanwhile, more than 60 samples with a total mass of more than 1 kg were recovered and a piece of one of these is studied here. The fall occurred 220 years after the historic meteorite fall of L'Aigle on April 26, 1803, <120 km south. L'Aigle is the closest meteorite fall to Saint-Pierre-le-Viger and belongs to the same chondrite group. Both meteorites are breccias containing only clasts of high metamorphic degree (type 5 and type 6). Since only 20% of the L chondrites are breccias this coincidence is remarkable. As just mentioned, both samples studied from these rocks in this work are ordinary chondrite breccias and consist of equilibrated and recrystallized lithologies of petrologic type 6. The brecciated texture in L'Aigle, resulting in a remarkable light–dark structure, is more pronounced than the brecciated features in Saint-Pierre-le-Viger, from which also type 5 fragments have been reported. The compositions of low-Ca pyroxene and olivine grains in Saint-Pierre-le-Viger (Fs21.2 and Fa23.4, respectively) clearly require an L-group classification. L'Aigle was classified as an L6 breccia in the past, and this has now been confirmed by new data on low-Ca pyroxene and olivine (Fs20.7 and Fa23.8, respectively). Saint-Pierre-le-Viger contains local thin shock veins, and both meteorites are moderately shocked. Most olivines in the studied samples have planar fractures, but the estimated abundance of mosaicized olivines of 30%–40% among the large grains require a S4 shock classification. Oxygen isotope and bulk chemical data of Saint-Pierre-le-Viger certainly support the L chondrite classification. Bulk spectral data of Saint-Pierre-le-Viger are dominated by silicate minerals, that is, Fe-bearing low-Ca pyroxene, olivine, and plagioclase. Isotopic, chemical, and spectral data of the L'Aigle meteorite are shown for comparison and are very similar, providing additional circumstantial evidence of Saint-Pierre-le-Viger's L chondritic nature.  相似文献   

17.
Abstract— A catalog of Chinese meteorites is presented. The catalog updates Bian Depei's 1981 catalog and is complete through 1990 October. It includes data for 54 stone meteorites, 30 iron meteorites and a stony-iron meteorite. Many of the meteorites were previously unknown in the West.  相似文献   

18.
19.
Abstract— Nine additional iron meteorite fragments weighing a total of 72 kg were recovered from the Derrick Peak area by a Canterbury Museum geological party in late 1988. One iron was located in the Onnum Valley, 6 km south of the previous finds. Geochemical analysis indicates that all irons belong to a single meteorite shower, greatly increasing the known extent of the fall zone. Kamp and Lowe (1982) have previously estimated the terrestrial age of the meteorite from glacial geological evidence. The location of the 1988 finds supports Kamp and Lowe's interpretation that the meteorites lie in situ, but recent revisions of the chronology of Cenozoic glacial history of the region reduce the interpreted terrestrial age. An age of between Oxygen Isotope stages 6 and 2 is probable (190–125 to 35–12 ka BP). This conflicts with a terrestrial age estimate of 1.0 ± 0.1 Ma BP from cosmogenic radionuclides.  相似文献   

20.
Abstract— Thirteen new meteorites and three meteorite inclusions have been analyzed. Their results have been incorporated into earlier published data for a comprehensive reference to all analyzed meteorites at the Smithsonian Institution. The six tables facilitate a convenient overlook of meteorite data. Table 1 presents an alphabetical list of analyzed meteorites, Table 2 chemical analyses of stony meteorites, Table 3 chemical analyses of iron meteorites, Table 4 elemental composition of stony meteorites, Table 5 average composition of carbonaceous chondrites and achondrites (falls and finds), and Table 6 presents average composition of H, L, LL, and Antarctic chondrites (falls and finds). The tables are available online at the journal's Web site http:meteoritics.org .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号