首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Southern Alps mountain chain, New Zealand, has formed as a consequence of late Cenozoic collision of the continental parts of the Pacific and Australia plates. Fission track analysis has yielded estimates of the amount, age of initiation, and rate of late Cenozoic rock uplift for 82 surface samples taken from transects across the Southern Alps. The mean surface, summit and valley elevations in the vicinity of each of the rock sample sites have also been measured. Regression of the geomorphic variables on the uplift variables has been used to establish quantitative relationships between uplift and geomorphology. There are strong and consistent linear associations between uplift and the elevations of the mean surface, summits and valleys. The preferred regression models have uniform slope but varying elevation response between transects. Substitution of space for time has allowed the evolution of landforms to be studied. To the east of the Main Divide, elevation and relief are proportional to, and closely related to, the age of initiation of rock uplift (‘uplift age’) and the amount of rock uplift (r2 > 0·8). Mean surface uplift was delayed for ~2 Ma after the start of rock uplift, a result of the stripping of a soft cover rock succession that, prior to rock uplift, overlaid the harder greywacke basement. Inter-transect variations in regression response and x-intercept are inferred, therefore, to reflect the variable preuplift thickness of cover rocks. However, the regular regression slope for the transects reflects the consistent nature of the interaction between uplift and the erodibility of greywacke basement. Uplift of the mean surface proceeded at 0·4 km/km and 0·4 km/Ma of rock uplift, while the rock uplift rate was 0·8 km/Ma. Summit elevations have increased at a rate of 0·6 km/Ma and valley elevations have increased at 0·2 km/Ma. Regression lines relating mean surface, summit and valley elevations to rock uplift and uplift age diverge from common intercepts; it is concluded, therefore, that the mountains east of the Main Divide have continued to increase in elevation and relief and change in form over time since the start of mean surface uplift. Mountain elevation has little relationship with late Cenozoic mean rock uplift rates of 0·8–1·0 km/Ma or inferred contemporary rock uplift rates (r2 ~ 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·8). Transects with higher rock uplift rates support higher topography. Landforms are therefore in a stable equilibrium with rock uplift rate, and the landscape contains no residual evidence of the total amount of rock uplift, or the age of uplift. Lithological variation appears to have no relationship with elevation.  相似文献   

2.
Thermal modeling of the Southern Alps,New Zealand   总被引:1,自引:0,他引:1  
Finite-element modeling of the thermal regime across the Southern Alps of New Zealand has been carried out along two profiles situated near the Franz Josef and Haast valleys. The modeling involves viscous deformation beneath the Southern Alps, including both uplift and erosion, and crustal/lithospheric thickening, as a result of crustal shortening extending to 20 mm/y of a 25-km thick crust. Published uplift rates and crustal thickness variations along the two profiles are used to constrain the modeled advection of crustal material, and results are compared with the recent heat flow determinations, 190±50 mW/m2 in the Franz Josef valley and 90±25 mW/m2 in the Haast valley. Comparisons of the model with published K–Ar and fission track ages, show that the observed heat flow in the Franz Josef valley is consistent with observed zircon fission track ages of around 1 Ma, if the present-day uplift rate is close to 10 mm/y. Major thermal differences between the Franz Josef and Haast profiles appear to be due to different uplift and erosion rates. There is weak evidence that frictional heating close to the Alpine fault zone is not significant. The modeling provides explanations for the distribution of seismicity beneath the Southern Alps, and predicts a low surface heat flow over the eastern foothills due to the dominant thermal effect of crustal thickening beneath this region. Predicted temperatures at mid-crustal depth beneath the zone of maximum uplift rate are 50–100°C cooler than those indicated in previously published models, which implies that thermal weakening of the crust may not be the main factor causing the aseismicity of the central Southern Alps. The results of the modeling demonstrate that the different types of reset age data in the region within 25 km of the Alpine fault are critical for constraining models of the deformation and the thermal regime beneath the Southern Alps.  相似文献   

3.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The actively deformed foreland of eastern Qilian Shan (mountains) contains well‐preserved geomorphic features such as erosion surfaces, river terraces and tectonically uplifted alluvial fans, providing suitable archives for research on regional tectonic activities and palaeoclimatic changes. These geomorphic surfaces are well dated by using a combination of magnetostratigraphy, electron spin resonance, thermoluminescence, infra‐red stimulated luminescence, radiocarbon dating, and correlation with the well‐established loess–palaeosol sequences of China. Our results show that the erosion surface formed about 1·4 Ma ago, and the age of river terraces is 1·24 Ma, 820–860 ka, 780 ka, 420–440 ka, 230–250 ka, 140 ka, 60 ka and 10 ka, respectively. Valley incision rates of c. 0·09–0·25 m ka?1 have been identified. The repetitive stratigraphic and geomorphic pattern of these terraces indicates the fluvial sedimentation–incision cycles are tightly associated with the 100‐ka glacial–interglacial climatic cycles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The integration of structural analyses with 40Ar/39Ar dating of fault-related pseudotachylytes provides time constraints for the reconstruction of the Alpine evolution of the central portion of the South Alpine orogenic wedge. In the northern sector of the belt a Variscan basement is stacked southward on the Permian to Mesozoic cover along regional faults (Orobic and Porcile thrusts). Fault zones, slightly postdating a first folding event of Alpine age, experienced a complex evolution through the ductile and brittle deformation regime, showing greenschist facies mylonites overprinted by a penetrative cataclastic deformation. Generation of fault-related pseudotachylyte veins marks the onset of brittle conditions, lasting up to the youngest episodes of fault activity. 40Ar/39Ar dating of the pseudotachylyte matrix of 9 samples give two separated age clusters: Late Cretaceous (80–68 Ma) and latest Palaeocene to Middle Eocene (55–43 Ma). These new data provide evidence that the pre-Adamello evolution of the central Southern Alps was characterised by the superposition of different tectonic events accompanying the exhumation of the deepest part of the belt through the brittle–ductile transition. The oldest pseudotachylyte ages demonstrate that south-verging regional thrusting in the central Southern Alps was already active during the Late Cretaceous, concurrently with the development of a synorogenic foredeep basin where the Upper Cretaceous Lombardian Flysch was deposited.  相似文献   

6.
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y.  相似文献   

7.
Abstract Compositional variation of silicates (plagioclase, K-feldspar, epidote, titanite, garnet, white mica, biotite, chlorite), ilmenite, carbonates (calcite, ankerite) and apatite, in quartzofeldspathic lithologies of the Alpine Schist, New Zealand, is discussed in terms of increasing metamorphic grade and possible isograd-producing reactions. The mineral data, in conjunction with geological considerations, are used to determine polychronous P-T arrays of an early high P/T event (c. 16°C/kb; 5°C/km) overprinted by a lower P/T event (c. 50°C/kb; 15°C/km) that provides an estimation of Mesozoic and Cenozoic exhumation of schist of 11 to 13 km and 19 to 22 km respectively. The effects of possible shear heating and recrystallization to form K-feldspar zone schist near the Alpine Fault is consistent with movement along a mid to lower crustal detachment surface during Cenozoic shortening, and near isothermal exhumation of the schists to form the Southern Alps.  相似文献   

8.
Strike-slip faults and normal faults are dominant active tectonics in the interior of Tibetan plateau and control a series of basins and lakes showing extension since the Late Cenozoic, by contrast with the thrust faulting along the orogenic belts bordering the plateau. The late Neotectonic movement of those faults is key information to understand the deformation mechanism for Tibetan plateau. The Gyaring Co Fault is a major active right-lateral strike-slip fault striking~300° for a distance of~240km in central Tibet, in south of Bangong-Nujiang suture zone. The Gyaring Co Fault merges with the north-trending Xainza-Dinggye rift near the southern shore of Gyaring Co. From NW to SE, Dongguo Co, Gemang Co-Zhangnai Co, Zigui Co-Gyaring Co form the Gyaring Co fault zonal drainage basin. Some scholars have noticed that the formation of lakes and basins may be related to strike-slip faults and rift, but there is no analysis on the Gyaring Co fault zonal drainage basin and its response to regional tectonics. In recent years, a variety of quantitative geomorphic parameters have been widely used in the neotectonic systems to analyze the characteristics of the basin and its response mechanism to the tectonic movement. In this paper, we applied ASTER GDEM data on the ArcGIS platform, extracted the Gyaring Co fault zonal drainage basin based on Google Earth images (Landsat and GeoEye) and field work. We acquired basic geomorphic parameters of 153 sub-basin (such as grade, relief, average slope, area) and Hypsometric Index (HI) value and curve. Statistical results have indicated significant differences in scale(area and river network grade)in north and south sides of the fault. Southern drainage basins' relief, slope, HI value are higher than the northern basins, and the overall shape of hypsometric curve of northern basins are convex compared with southern concavity. Along the strike of the Gyaring Co Fault, average slope, and HI value are showing generally increasing trending and hypsometric curve become convex from west to east. By comparing and analyzing the lithology and rainfall conditions, we found that they have little influence on the basic parameters and HI value of drainage basins. Therefore, the changes of basin topographic differences between northern and southern side of fault and profile reveal the Gyaring Co Fault has experienced differential uplift since the late Cenozoic, southern side has greater uplift compared to the north side, and the uplift increased from NW to SE, thus indicate that normal faulting of the Gyaring Co Fault may enhanced by the Xainza-Dinggye rift. The early uplift of the Gangdise-Nyainqentanglha Mountain in late Cenozoic might provide northward inclined pre-existing geomorphic surfaces and the later further rapid uplift on the Gangdise-Nyaingentanglha Mountain and Xainza-Dinggye rift might contribute to the asymmetrical development of the Gyaring Co fault zonal drainage basin.  相似文献   

9.
Because of the frequent seismic activity in Songyuan in recent years, the modes of tectonic movement in this area since the Quaternary have attracted increasing consideration. This paper selects the Gudian Fault which locates between the southeast uplift and central depression of Songliao Basin as the research object. We discussed the Quaternary structural characteristics of the Gudian Fault using growth strata. Using the data of deep seismic reflection prospecting for oil, we determined the location, geometry and kinematics characteristics of the Gudian Fault. And using the shallow seismic reflection prospecting data, the combined drilling exploration data and TL data, we determined precisely the inversion tectonics feature of the fault since late Cenozoic. Based on the above data, we believe that the Gudian Fault is dominated mainly by thrust-folding since Quaternary. A set of growth strata is recognized by shallow seismic reflection exploration data. According to the overlap of growth strata and the relationship between deposition rate and uplift rate, we confirm that the uplift rate of Gudian Fault in the early of Early Pleistocene is less than 0.15mm/a. And according to the offlap of growth strata and the relationship between deposition rate and uplift rate, the uplift rate of the Gudian Fault is more than 0.091mm/a in the late of Early Pleistocene and more than 0.052mm/a in middle Pleistocene. According to the chronological data, it is determined that the uplift rate of the Gudian Fault is 0.046mm/y since 205ka.  相似文献   

10.
Rock salt is approximately 1000 times more soluble than limestone and thus displays high rates of geomorphic evolution. Cave stream channel profiles and downcutting rates were studied in the Mount Sedom salt diapir, Dead Sea rift valley, Israel. Although the area is very arid (mean annual rainfall ≈ 50 mm), the diapir contains extensive karst systems of Holocene age. In the standard cave profile a vertical shaft at the upstream end diverts water from a surface channel in anhydrite or clastic cap rocks into the subsurface route in the salt. Mass balance calculations in a sample cave passage yielded downcutting rates of 0–2 mm s?1 during peak flood conditions, or about eight orders of magnitude higher than reported rates in any limestone cave streams. However, in the arid climate of Mount Sedom floods have a low recurrence interval with the consequence that long-term mean downcutting rates are lower: an average rate of 8·8 mm a?1 was measured for the period 1986–1991 in the same sample passage. Quite independently, long-term mean rates of 6·2mm a?1 are deduced from 14C ages of driftwood found in upper levels of 12 cave passages. These are at least three orders of magnitude higher than rates established for limestone caves. Salt cave passages develop in two main stages: (1) an early stage characterized by high downcutting rates into the rock salt bed, and steep passage gradients; (2) a mature stage characterized by lower downcutting rates, with establishment of a subhorizontal stream bed armoured with alluvial detritus. In this mature stage downcutting rates are controlled by the uplift rate of the Mount Sedom diapir and changes of the level of the Dead Sea. Passages may also aggrade. These fast-developing salt stream channels may serve as full-scale models for slower developing systems such as limestone canyons.  相似文献   

11.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

12.
The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26Al and 10Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.  相似文献   

13.
The uplift and exhumation process in the Tianshan orogen since the late Paleozoic were likely related to the preservation of ore deposits. This study involved reconstructing the whole tectonic thermal history of the Ouxidaban pluton in central South Tianshan Mountains based on hornblende/plagioclase Ar-Ar and zircon/apatite(U-Th)/He methods. The thermal history and uplift process of central South Tianshan Mountains since the late Paleozoic were analyzed according to the results of previous works and cooling/exhumation rate features. The hornblende yields a plateau age of 382.6±3.6 Ma, and the plagioclase yields a weighted mean age of 265.8±4.9 Ma. The Ouxidaban pluton yields weighted mean zircon(U-Th)/He age of 185.8±4.3 Ma and apatite(U-Th)/He age of 31.1±2.9 Ma, respectively. Five stages of tectonic thermal history of South Tianshan Mountains since the late Paleozoic could be discriminated by the cooling curve and modeling simulation:(1) from the latest Silurian to Late Devonian, the average cooling rate of the Ouxidaban pluton was 7.84°C/Ma;(2) from the Late Devonian to the latest Middle Permian, the average cooling rate was about 2.07°C/Ma;(3) from the latest Middle Permian to the middle Eocene, the cooling rate decreased to about 0.68°C/Ma, suggesting that the tectonic activity was gentle at this time;(4) a sudden increase of the cooling rate(5.00°C/Ma) and the exhumation rate(0.17 mm/a), and crustal exhumation of ~1.83 km indicated that the Ouxidaban pluton would suffer a rapid uplift event during the Eocene(~46?35 Ma);(5) since the middle Eocene, the rapid uplift was sustained, and the average cooling rate since then has been 1.14°C/Ma with an exhumation rate of about 0.04 mm/a and an exhumation thickness of 1.33 km. The strong uplift since the Cenozoic would be related to a far-field effect from the Indian and Eurasian plates' collision. However, it was hysteretic that the remote effect was observed in the Tianshan orogenic belt.  相似文献   

14.
Abstract The chronological characteristics of Alpine metamorphic rocks are described and Alpine metamorphic events are reinterpreted on the basis of chronological data for the western and central Alps from 1960 to 1992. Metamorphic rocks of the Lepontine, Gran San Bernardo, Piemonte, Internal Crystalline Massifs and Sesia-Lanzo mostly date Alpine metamorphic events, but some (along with granitoids and gneisses from the Helvetic and Southern Alps) result from the Variscan, Caledonian or older events and thus predate the Alpine events. Radiometric age data from the Lepontine area show systematic age relations: U-Pb monazite (23-29 Ma), Rb-Sr muscovite (15–40 Ma) and biotite (15–30 Ma), K-Ar biotite (10-30 Ma), muscovite (15–25 Ma) and hornblende (25-35 Ma), and FT zircon (10-20 Ma) and apatite (5-15 Ma), which can be explained by the different closure temperatures of the isotopic systems. A 121 Ma U-Pb zircon age for a coesite-bearing whiteschist (metaquartzite) from the Dora-Maira represents the peak of ultra-high pressure metamorphism. Coesite-free eclogites and blueschists related to ultra-high pressure rocks in the Penninic crystalline massifs yield an 40Ar-39Ar plateau age of about 100 Ma for phengites, interpreted as the cooling age. From about 50 Ma, eclogites and glaucophane schists have also been reported from the Piemonte ophiolites and calcschists, suggesting the existence of a second high P/T metamorphic event. Alpine rocks therefore record three major metamorphic events: (i) ultra-high and related high P/T metamorphism in the early Cretaceous, which is well preserved in continental material such as the Sesia-Lanzo and the Penninic Internal Crystalline Massifs; (ii) a second high P/T metamorphic event in the Eocene, which is recognized in the ophiolites and calcschists of the Mesozoic Tethys; and (iii) medium P/T metamorphism, in which both types of high P/T metamorphic rocks were variably reset by Oligocene thermal events. Due to the mixture of minerals formed in the three metamorphic events, there is a possibility that almost all geochronological data reported from the Alpine metamorphic belt show mixed ages. Early Cretaceous subduction of a Tethyan mid-ocean ridge and Eocene continental collision triggered off the exhumation of the high pressure rocks.  相似文献   

15.
The Quaternary Takidani Granodiorite (Japan Alps) is analogous to the type of deep-seated (3–5 km deep) intrusive-hosted fracture network system that might support (supercritical) hot dry/wet rock (HDR/HWR) energy extraction. The I-type Takidani Granodiorite comprises: porphyritic granodiorite, porphyritic granite, biotite-hornblende granodiorite, hornblende-biotite granodiorite, biotite-hornblende granite and biotite granite facies; the intrusion has a reverse chemical zonation, characterized by >70 wt% SiO2 at its inferred margin and <67 wt% SiO2 at the core. Fluid inclusion evidence indicates that fractured Takidani Granodiorite at one time hosted a liquid-dominated, convective hydrothermal system, with <380°C, low-salinity reservoir fluids at hydrostatic (mesothermal) pressure conditions. ‘Healed’ microfractures also trapped >600°C, hypersaline (35 wt% NaCleq) fluids of magmatic origin, with inferred minimum pressures of formation being 600–750 bar, which corresponds to fluid entrapment at 2.4–3.0 km depth. Al-in-hornblende geobarometry indicates that hornblende crystallization occurred at about 1.45 Ma (7.7–9.4 km depth) in the (marginal) eastern Takidani Granodiorite, but later (at 1.25 Ma) and shallower (6.5–7.0 km) near the core of the intrusion. The average rate of uplift across the Takidani Granodiorite from the time of hornblende crystallization has been 5.1–5.9 mm/yr (although uplift was about 7.5 mm/yr prior to 1.2 Ma), which is faster than average uplift rates in the Japan Alps (3 mm/yr during the last 2 million years). A temperature–depth–time window, when the Takidani Granodiorite had potential to host an HDR system, would have been when the internal temperature of the intrusive was cooling from 500°C to 400°C. Taking into account the initial (7.5 mm/yr) rate of uplift and effects of erosion, an optimal temperature–time–depth window is proposed: for 500°C at 1.54–1.57 Ma and 5.2±0.9 km (drilling) depth; and 400°C at 1.36–1.38 Ma and 3.3±0.8 km (drilling) depth, which is within the capabilities of modern drilling technologies, and similar to measured temperature–depth profiles in other active hydrothermal systems (e.g. at Kakkonda, Japan).  相似文献   

16.
The Kalpin nappe structure is a strongest thrust and fold deformation belt in front of the Tianshan Mountains since the Cenozoic time. The tectonic deformation occurred in 5―6 striking Meso-zoic-Cenozoic fold zones, and some renascent folds formed on the recent alluvial-proluvial fans in front of the folded mountains. We used the total station to measure gully terraces along the longitudinal to-pographic profile in the renascent fold zones and collected samples from terrace deposits for age de-termination. Using the obtained formation time and shortening amount of the deformed terraces, we calculated the shortening rate of 4 renascent folds to be 0.1±0.03 mm/a, 0.12±0.04 mm/a, 0.59±0.18 mm/a, and 0.26±0.08 mm/a, respectively. The formation time of the renascent folds is some later than the major tectonic uplift event of the Qinghai-Tibet Plateau 0.14 Ma ago. It may be the long-distance effect of this tectonic event on the Tianshan piedmont fold belt.  相似文献   

17.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

18.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

19.
喻顺  陈文  张斌  孙敬博  李超  袁霞  沈泽  杨莉  马勋 《地球物理学报》2016,59(8):2922-2936
天山是中亚造山带重要组成部分,其中-新生代构造热演化及隆升剥露史研究是认识中亚造山带构造变形过程与机制的关键.本文应用磷灰石(U-Th)/He技术重建中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程.磷灰石(U-Th)/He数据综合解释及热演化史模拟表明该地区至少存在晚白垩世、早中新世、晚中新世3期快速隆升剥蚀事件,起始时间分别为~90Ma、~13Ma及~5Ma,且这3期隆升剥蚀事件在整个天山地区具有广泛的可对比性.相对于磷灰石裂变径迹,磷灰石(U-Th)/He年龄记录了中天山南缘地质演化史中更新和更近的热信息,即中天山在晚中新世(~5 Ma)快速隆升剥蚀,其剥蚀速率为~0.47mm·a~(-1),剥蚀厚度为~2300m.总体上,中天山科克苏地区隆升剥蚀起始时间从天山造山带向昭苏盆地(由南向北)逐渐变老,表明了中天山南缘隆升剥蚀存在不均一性,并发生了多期揭顶剥蚀事件.  相似文献   

20.
The Dengdengshan and Chijiaciwo faults situate in the northeast flank of Kuantanshan uplift at the eastern terminal of Altyn Tagh fault zone, striking northwest as a whole and extending 19 kilometers and 6.5 kilometers for the Dengdengshan and Chijiaciwo Fault, respectively. Based on satellite image interpretation, trenching, faulted geomorphology surveying and samples dating etc., we researched the new active characteristics of the faults. Three-levels of geomorphic surfaces, i.e. the erosion rock platform, terrace I and terrace Ⅱ, could be found in the northeast side of Kuantanshan Mountain. The Dengdengshan Fault dislocated all geomorphic surfaces except terrace I, and the general height of scarp is about 1.5 meters, with the maximum reaching 2.6 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 2.7 meters, the average vertical dislocation of each event changed from 0.5 to 1.2 meters. By collecting age samples and dating, the event Ⅰ occurred about 5ka BP, event Ⅱ occurred about 20ka BP, and event Ⅲ occurred about 35ka BP. The recurrence interval is about 15ka BP; and the vertical slip rate since the late Pleistocene is about 0.04mm/a. The Chijiaciwo Fault, however, dislocated all three geomorphic surfaces, and the general scarp height is about 2.0 meters with the maximum up to 4.0 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 3.25 meters, the average vertical dislocation of each event changed from 0.75 to 1.5 meters, and the vertical slip rate since the late Pleistocene is about 0.06mm/a. Although the age constraint of paleoearthquakes on Chijiaciwo Fault is not as good as that of Dengdengshan Fault, the latest event on Chijiaciwo Fault is later than Dengdengshan Fault's. Furthermore, we infer that the recurrence interval of Chijiaciwo Fault is 15ka BP, which is close to that of Dengdengshan Fault. The latest event on Chijiaciwo Fault is later than the Dengdengshan Fault's, and the vertical displacement and the slip rate of a single event in late Quaternary are both larger than that of Dengdengshan Fault. Additionally, a 5-kilometer-long discontinuity segment exists between these two faults and is covered by Quaternary alluvial sand gravel. All these indicate that the activity of the Chijiaciwo Fault and Dengdengshan Fault has obvious segmentation feature. The size of Chijiaciwo Fault and Dengdengshan Fault are small, and the vertical slip rate of 0.04~0.06mm/a is far smaller than that of Qilianshan Fault and the NW-striking faults in Jiuxi Basin. All these indeicate that the tectonic deformation of this region is mainly concentrated on Hexi Corrider and the interior of Tibet Plateau, while the activties of Chijiaciwo and Dengdengshan faults are characterized by slow slip rate, long recurrence interval(more than 10ka)and slow tectonic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号