首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation. Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<~130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.  相似文献   

2.
Abstract— Lunar meteorite Queen Alexandra Range 93069 is a clast-rich, glassy-matrix regolith breccia of ferroan, highly aluminous bulk composition. It is similar in composition to other feldspathic lunar meteorites but differs in having higher concentrations of siderophile elements and incompatible trace elements. Based on electron microprobe analyses of the fusion crust, glassy matrix, and clasts, and instrumental neutron activation analysis of breccia fragments, QUE 93069 is dominated by nonmare components of ferroan, noriticanorthosite bulk composition. Thin section QUE 93069,31 also contains a large, impact-melted, partially devitrified clast of magnesian, anorthositic-norite composition. The enrichment in Fe, Sc, and Cr and lower Mg/Fe ratio of lunar meteorites Yamato 791197 and Yamato 82192/3 compared to other feldspathic lunar meteorites can be attributed to a small proportion (5–10%) of low-Ti mare basalt. It is likely that the nonmare components of Yamato 82192/3 are similar to and occur in similar abundance to those of Yamato 86032, with which it is paired. There is a significant difference between the average FeO concentration of the lunar highlands surface as inferred from the feldspathic lunar meteorites (mean: ~5.0%; range: 4.3–6.1%) and a recent estimate based on data from the Clementine mission (3.6%).  相似文献   

3.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   

4.
Abstract— We measured the noble gas isotopic abundances in lunar meteorite QUE 94269 and in bulk-, glass-, and crystal-phases of lunar meteorite QUE 94281. Our results confirm that QUE 94269 originated from the same meteorite fall as QUE 93069: both specimens yield the same signature of solar-particle irradiation and also the cosmogenic noble gases are in agreement within their uncertainities. Queen Alexandra Range 93069/94269 was exposed to cosmic rays in the lunar regolith for ~1000 Ma, and it trapped 3.5 × 10?4 cm3STP/g solar 36Ar, the other solar noble gases being present in proportions typical for the solar-particle irradiation. The bulk material of QUE 94281 contains about three times less cosmogenic and trapped noble gases than QUE 93069/94269 and the lunar regolith residence time corresponds to 400 ± 60 Ma. We show that in lunar meteorites the trapped solar 20Ne/22Ne ratio is correlated with the trapped ratio 40Ar/36Ar, that is, trapped 20Ne/22Ne may also serve as an antiquity indicator. The upper limits of the breccia compaction ages, as derived from the trapped ratio 40Ar/36Ar for QUE 93069/94269 and QUE 94281 are ~400 Ma and 800 Ma, respectively. We found very different regolith histories for the glass phase and the crystals separated from QUE 94281. The glass phase contains much less cosmogenic and solar noble gases than the crystals, in contrast to the glasses of lunar meteorite EET 87521, that were enriched in noble gases relative to the crystalline material. The QUE 94281 phases yield a 40K-40Ar gas retention age of 3770 Ma, which is in the range of that for lunar mare rocks.  相似文献   

5.
Abstract— Queen Alexandra Range (QUE) 94281, a lunar meteorite recently discovered in Antarctica, is a glassy-matrix, clast-rich regolith breccia containing a mixture of mafic, volcanic-glass and gabbroic constituents and a diverse set of highland constituents. In thin section, the clast assemblage is dominated by coarse mineral debris from a shallow intrusive or hypabyssal setting, or from deep within a thick mare flow. Abundant coarse-grained pyroxene clasts have fine-scale exsolution lamellae and compositions similar to pyroxenes of known lunar very-low-Ti (VLT) basalts and other lunar meteorites of basaltic composition. Pyroxene compositions follow Fe-enrichment extending to hedenbergite, which is associated with fayalite and cristobalite, indicating slow cooling. We refer to the protolith of the crystalline VLT component as VLT gabbro. Fragments of pyroclastic glasses that have high Fe and low Ti concentrations, similar to the pyroclastic green glasses known from Apollo samples, are common. Lithic clasts include abundant subrounded, glassy to cryptocrystalline, aluminous (~17–30 wt% Al2O3) KREEP-poor melt breccias of highland origin and a variety of other feldspathic impactites. On the basis of composition of our subsamples, QUE 94281 consists of ~54 wt% mafic or “mare” components and 46 wt% feldspathic or “highland” components. The bulk composition of QUE 94281 is similar to that of Yamato (Y) 793274, but QUE 94281 has slightly greater concentrations of some siderophile elements and slightly lower concentrations of those elements contributed mainly by mafic constituents. Differences in siderophile element concentrations are consistent with longer surface exposure of QUE 94281. Minor differences in trace element variations of subsamples of the two meteorites suggest subtle differences in the composition of their highland constituents. Nonetheless, the overall similarity of compositions supports the possibility that they were ejected from the same source region on the Moon. The crystalline VLT component of QUE 94281 differs from those known from Apollo 17 and Luna 24 VLT lithologies and from that of basaltic breccia Elephant Moraine (EET) 87521. The VLT-gabbro component and the ferroan VLT volcanic glasses in QUE 94281 have compositions that may be petrogenetically related by derivation from a common picritic parent composition, represented by an ultramafic glass found in QUE 94281.  相似文献   

6.
Northwest Africa (NWA) 7611/10480 are lunar regolith breccia meteorites, composed of mineral fragments and various clasts including mare basalts, volcanic glasses, gabbroic lithologies, and a diverse variety of highland materials (ferroan anorthosite, Mg-suite, magnesian anorthosite, and alkali suite rocks) as well as different subvarieties of impact melt breccia. The Apollo two-component mixing model calculation reveals that the NWA 7611 source region contains 58 wt% mare materials and 42 wt% highland components, but the estimated mare components in NWA 10480 have a higher abundance (66 wt%). The predominantly very low-Ti (VLT) composition in both fine-grained basaltic and coarse-grained gabbroic lithologies indicates a provenance associated with a thick lava flow or a single magmatic system. The co-occurrence of zoning patterns and fine-scale exsolution lamellae in pyroxene debris supports a cryptomare deposit as the best candidate source. Phosphate Pb–Pb ages in matrix fragments, impact melt breccia, and basaltic clast indicate that the breccia NWA 7611 records geological events spanning approximately 4305–3769 Ma, which is consistent with the ages of ancient lunar VLT volcanism and the products of basin-forming impacts on the lunar nearside. The youngest reset age at ~3.2 Ga is potentially related to the strong shock lithification process of breccia NWA 7611. Moreover, the similar petrology, texture, geochemistry, cosmic-ray exposure data, and crystallization ages support that basaltic component in Yamato (Y)-793274, and Queen Alexandra Range (QUE) 94281, NWA 4884, and NWA 7611 clan came from the same basalt flow.  相似文献   

7.
Abstract The major‐ and minor‐element abundances were determined by electron microprobe in 1039 glasses from regoliths and regolith breccias to define the compositional topology of lunar glasses at the Apollo 16 landing site in the central highlands of the Moon. While impact glasses with chemical compositions similar to local materials (i.e., Apollo 16 rocks and regoliths) are abundant, glasses with exotic compositions (i.e., transported from other areas of the Moon) account for up to ?30% of the population. A higher proportion of compositionally exotic, angular glass fragments exists when compared to compositionally exotic glass spherules. Ratios of non‐volatile lithophile elements (i.e., Al, Ti, Mg) have been used to constrain the original source materials of the impact glasses. This approach is immune to the effects of open‐system losses of volatile elements (e.g., Si, Na, K). Four impact glasses from one compositionally exotic group (low‐Mg high‐K Fra Mauro; lmHKFM) were selected for 40Ar/39 Ar dating. The individual fragments of lmHKFM glass all yielded ages of ?3750 ± 50 Ma for the time of the impact event. Based on the petrography of these individual glasses, we conclude that the likely age of the impact event that formed these 4 glasses, as well as the possible time of their ballistic arrival at the Apollo 16 site from a large and distant cratering event (perhaps in the Procellarum KREEP terrain) (Zeigler et al. 2004), is 3730 ± 40 Ma, close to the accepted age for Imbrium.  相似文献   

8.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   

9.
Abstract— The petrology, major and trace element geochemistry, and Nd‐Ar‐Sr isotopic compositions of a ferroan noritic anorthosite clast from lunar breccia 67215 have been studied in order to improve our understanding of the composition, age, structure, and impact history of the lunar crust. The clast (designated 67215c) has an unusually well preserved igneous texture. Mineral compositions are consistent with classification of 67215c as a member of the ferroan anorthositic suite of lunar highlands rocks, but the texture and mineralogy show that it cooled more rapidly and at shallower depths than did more typical ferroan anorthosites (FANs). Incompatible trace element concentrations are enriched in 67215c relative to typical FANs, but diagnostic signatures such as Ti/Sm, Sc/Sm, plagiophile element ratios, and the lack of Zr/Hf and Nb/Ta fractionation show that this cannot be due to the addition of KREEP. Alternatively, 67215c may contain a greater fraction of trapped liquid than is commonly present in lunar FANs. 147Sm‐143Nd isotopic compositions of mineral separates from 67215c define an isochron age of 4.40 ± 0.11 Gyr with a near‐chondritic initial ε143Nd of +0.85 ± 0.53. The 40Ar‐39Ar composition of plagioclase from this clast records a post‐crystallization thermal event at 3.93 ± 0.08 Gyr, with the greatest contribution to the uncertainty in this age deriving from a poorly constrained correction for lunar atmosphere 40Ar. Rb‐Sr isotopic compositions are disturbed, probably by the same event recorded by the Ar isotopic compositions. Trace element compositions of FANs are consistent with crystallization from a moderately evolved magma ocean and do not support a highly depleted source composition such as that implied by the positive initial ε143Nd of the ferroan noritic anorthosite 62236. Alternatively, the Nd isotopic systematics of lunar FANs may have been subject to variable degrees of modification by impact metamorphism, with the plagioclase fraction being more strongly affected than the mafic phases. 147Sm‐143Nd isotopic compositions of mafic fractions from the 4 ferroan noritic anorthosites for which isotopic data exist (60025, 62236, 67016c, 67215c) define an age of 4.46 ± 0.04 Gyr, which may provide a robust estimate for the crystallization age of lunar ferroan anorthosites.  相似文献   

10.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

11.
Meteorites ejected from the surface of the Moon as a result of impact events are an important source of lunar material in addition to Apollo and Luna samples. Here, we report bulk element composition, mineral chemistry, age, and petrography of Miller Range (MIL) 090036 and 090070 lunar meteorites. MIL 090036 and 090070 are both anorthositic regolith breccias consisting of mineral fragments and lithic clasts in a glassy matrix. They are not paired and represent sampling of two distinct regions of the lunar crust that have protoliths similar to ferroan anorthosites. 40Ar‐39Ar chronology performed on two subsplits of MIL 090070,33 (a pale clast impact melt and a dark glassy melt component) shows that the sample underwent two main degassing events, one at ~3.88 Ga and another at ~3.65 Ga. The cosmic ray exposure data obtained from MIL 090070 are consistent with a short (~8–9 Ma) exposure close to the lunar surface. Bulk‐rock FeO, TiO2, and Th concentrations in both samples were compared with 2‐degree Lunar Prospector Gamma Ray Spectrometer (LP‐GRS) data sets to determine areas of the lunar surface where the regolith matches the abundances observed on the sample. We find that MIL 090036 bulk rock is compositionally most similar to regolith surrounding the Procellarum KREEP Terrane, whereas MIL 090070 best matches regolith in the feldspathic highlands terrane on the lunar farside. Our results suggest that some areas of the lunar farside crust are composed of ferroan anorthosite, and that the samples shed light on the evolution and impact bombardment history of the ancient lunar highlands.  相似文献   

12.
Abstract— We report data for 14 mainly labile trace elements (Ag, Au, Bi, Cd, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn) in eight whole‐rock lunar meteorites (Asuka [A‐] 881757, Dar al Gani [DaG] 262, Elephant Moraine [EET] 87521, Queen Alexandra Range [QUE] 93069, QUE 94269, QUE 94281, Yamato [Y‐] 793169, and Y‐981031), and Martian meteorite (DaG 476) and incorporate these into a comparative study of basaltic meteorites from the Moon, Mars, and V‐type asteroids. Multivariate cluster analysis of data for these elements in 14 lunar, 13 Martian, and 34 howardite, eucrite, and diogenite (HED) meteorites demonstrate that materials from these three parents are distinguishable using these markers of late, low‐temperature episodes. This distinguishability is essentially as complete as that based on markers of high‐temperature igneous processes. Concentrations of these elements in 14 lunar meteorites are essentially lognormally distributed and generally more homogeneous than in Martian and HED meteorites. Mean siderophile and labile element concentrations in the 14 lunar meteorites indicate the presence of a CI‐equivalent micrometeorite admixture of 2.6% When only feldspathic samples are considered, our data show a slightly higher value of 3.4% consistent with an increasing micrometeorite content in regolith samples of higher maturity. Concentrations of labile elements in the 8 feldspathic samples hint at the presence of a fractionated highly labile element component, possibly volcanic in origin, at a level comparable to the micrometeorite component. Apparently, the process(es) that contributed to establishing lunar meteorite siderophile and labile trace element contents occurred in a system open to highly labile element transport.  相似文献   

13.
We have classified 1858 lithic and vitreous fragments from the Luna 16 core-tube sample. They were taken from the soil fractions ranging in size from 150 to 425 μ, at levels A and G (γ). No important differences are observed between the proportions of particle types in levels A and G, nor between the soils of Luna 16 and those from the Apollo 11 landing site in the nearby Mare Tranquillitatis. Luna 16 basalts are texturally and mineralogically similar to Apollo 11 basalts, though the former are characterized by more Fe-rich olivines and pyroxenes and by lower ilmenite contents than are Apollo 11 basalts. The atomic ratio Al/Ti in Luna 16 basalt pyroxenes in about 1.5; Apollo 11 basalt pyroxenes have Al/Ti = 2.0, indicating the possibility of a lower mean valence for Ti in the Luna 16 material than in the Apollo 11 material. Most light-colored lithic fragments are anorthositic rather than noritic in character and are comparable to Apollo 11 anorthosites in mineral chemistry. We believe they are samples of terra regions to the north of the Luna 16 landing site. Triangular diagrams plotting normative plagioclase, normative mafics plus oxides, and normative orthoclase plus apatite neatly separate the three major types of lunar materials — mare basalts, anorthosites, and noritic rocks — and reveal that the Luna 16 regolith is composed of mare basalt and anorthosite, with very little norite component. Colorless-to-greenish glass occurs in the Luna 16 sample, which has high Fe and low Ti; it may represent gabbroic rock related to the anorthosites  相似文献   

14.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

15.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

16.
The Northwest Africa (NWA) 2996 meteorite is a lunar regolith breccia with a “mingled” bulk composition and slightly elevated incompatible element content. NWA 2996 is dominated by clasts of coarse‐grained noritic and troctolitic anorthosite containing calcic plagioclase (An#~98) and magnesian mafic minerals (Mg#~75), distinguishing it from Apollo ferroan anorthosites and magnesian‐suite rocks. This meteorite lacks basalt, and owes its mingled composition to a significant proportion of coarse‐grained mafic clasts. One group of mafic clasts has pyroxenes similar to anorthosites, but contains more sodic plagioclase (An#~94) distinguishing it as a separate lithology. Another group contains Mg‐rich, very low‐titanium pyroxenes, and could represent an intrusion parental to regional basalts. Other clasts include granophyric K‐feldspar, disaggregated phosphate‐bearing quartz monzodiorites, and alkali‐suite fragments (An#~65). These evolved lithics are a minor component, but contain minerals rich in incompatible elements. Several anorthosite clasts contain clusters of apatite, suggesting that the anorthosites either assimilated evolved rocks or were metasomatized by a liquid rich in incompatible elements. We used Lunar Prospector gamma‐ray spectrometer remote sensing data to show that NWA 2996 is most similar to regoliths in and around the South Pole Aitken (SPA) basin, peripheral regions of eastern mare, Nectaris, Crisium, and southern areas of Mare Humorum. However, the mineralogy of NWA 2996 is distinctive compared with Apollo and Luna mission samples, and is likely consistent with an origin near the SPA basin: anorthosite clasts could represent local crustal material, mafic clasts could represent intrusions beneath basalt flows, and apatite‐bearing rocks could carry the SPA KREEP signature.  相似文献   

17.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

18.
Abstract— Cosmic-ray produced 14C (t1/2 = 5730 years), 36Cl (3.01 × 105 years), 26Al (7.05 × 105 years), and 10Be (1.5 × 106 years) in the recently discovered lunar meteorites Queen Alexandra Range 93069 (QUE 93069) and 94269 (QUE 94269) were measured by accelerator mass spectrometry. The abundance pattern of these four cosmogenic radionuclides and of noble gases indicates QUE 93069 and QUE 94269 were a paired fall and were exposed to cosmic rays near the surface of the Moon for at least several hundred million years before ejection. After the meteorite was launched from the Moon, where it had resided at a depth of 65–80 g/cm2, it experienced a short transition time, ~20–50 ka, before colliding with the Earth. The terrestrial age of the meteorite is 5–10 ka. Comparison of the cosmogenic nuclide concentrations in QUE 93069/94269 and MAC 88104/88105 clearly shows that these meteorites were not ejected by a common event from the Moon.  相似文献   

19.
A grain of light‐blue sulfate material was reported in the lunar highlands regolith meteorite PCA 02007 (Satterwhite and Righter 2013). Allocated grains of that material are, in fact, aluminosilicate glass with a chemical composition like that of the bulk meteorite and other lunar highlands regoliths. The calcium sulfate detected in PCA 02007 was likely a surface coating, and reasonably of Antarctic (not lunar) origin.  相似文献   

20.
Abstract— We investigated the characteristics and history of lunar meteorites Queen Alexandra Range 93069, Yamato 793169 and Asuka 881757 based on the abundances of all stable noble gas isotopes, the concentrations of the radionuclides 10Be, 26Al, 36Cl, and 81Kr, and the abundances of Mg, Al, K, Ca, Fe, Cl, Sr, Y, Zr, Ba, and La. Based on the solar wind and cosmic-ray irradiations, QUE 93069 is the most mature lunar meteorite studied up to now. The 40Ar/36Ar ratio of the trapped component is 1.87 ± 0.16. This ratio corresponds to a time when the material was exposed to solar and lunar atmospheric volatiles ~400 Ma ago. On the other hand, Yamato 793169 and Asuka 881757 contain very little or no solar noble gases, which indicates that these materials resided in the top layer of the lunar regolith only briefly or not at all. For all lunar meteorites, we observe a positive correlation of the concentrations of cosmic-ray produced with trapped solar noble gases. The duration of lunar regolith residence for the lunar meteorites was calculated based on cosmic-ray produced 21Ne, 38Ar, 78Kr, 83Kr, and 126Xe and appropriate production rates that were derived based on the target element abundances and the shielding indicator 131Xe/126Xe. For QUE 93069, Yamato 793169, and Asuka 881757, we obtained 1000 ± 400 Ma, 50 ± 10 Ma, and <1 Ma, respectively. Both Asuka 881757 and Yamato 793169 show losses of radiogenic 4He from U and Th decay and Yamato 793169 also 40Ar loss from K-decay. For Asuka 881757, we calculate a K-Ar gas retention age of 3100 ± 600 Ma and a 244Pu-136Xe fission age of 4240 ± 170 Ma. This age is one of the oldest formation ages ever observed for a lunar basalt. The exposure history of QUE 93069 after ejection from the Moon was derived from the radionuclide concentrations: ejection 0.16 ± 0.03 Ma ago, duration of Moon-Earth transit 0.15 ± 0.02 Ma and fall on Earth <0.015 Ma ago. This ejection event is distinguished temporally from those which produced the other lunar meteorites. We conclude that six to eight events are necessary to eject all the known lunar meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号