首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
van Maanen  Barend  Coco  Giovanni  Bryan  Karin R.  Friedrichs  Carl T. 《Ocean Dynamics》2013,63(11):1249-1262

Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.

  相似文献   

2.
Modeling the morphodynamic response of tidal embayments to sea-level rise   总被引:1,自引:1,他引:0  
Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.  相似文献   

3.
With enhanced rates of sea‐level rise predicted for the next century, the upstream extent of sea‐level influence across coastal plains is a topic of public importance. Australian coastal rivers provide a testing ground for exploring this issue because the area is tectonically stable, was not glaciated, and experienced a Holocene highstand between 7.4 and 2 ka of up to 1.5 m above Australian Height Datum (AHD). In the Shoalhaven River of New South Wales, investigation of a confined bedrock reach at Wogamia, 32 km inland, has identified a unit of dark, cohesive silt and sand with marine diatoms, shell fragments, and enhanced pyrite content, interpreted as estuarine. The unit is up to 13 m thick, thickens downstream, and is overlain by fluvial channel and floodplain deposits. The estuarine unit on‐laps a remnant Pleistocene terrace and extends to approximately +2.2 m AHD. Optically stimulated luminescence (OSL) and radiocarbon ages suggest that estuarine deposition commenced prior to 7.8 ka cal bp , predating the highstand by ~ 500 years, and that marine influence in the area continued to 5.3 ± 0.7 ka. During this period, a delta probably persisted at Wogamia, where a narrow upstream reach opens out, and subsequently advanced to fill the broad Shoalhaven coastal embayment. Although the effect of sea‐level rise depends on many factors, the results suggest that, during a highstand at or above present sea level, a strong marine influence may extend for tens of kilometres inland and penetrate confined bedrock reaches landward of coastal embayments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This study evaluates the patterns and effects of relative sea-level rise on the tidal circulation of the basin of the Ria Formosa coastal lagoon using a process-based model that is solved on an unstructured mesh. To predict the changes in the lagoon tidal circulation in the year 2100, the model is forced by tides and a static sea level. The bathymetry and the basin geometry are updated in response to sea-level rise for three morphological response scenarios: no bed updating, barrier island rollover, and basin infilling. Model results indicate that sea-level rise (SLR) will change the baseline current velocity patterns inside the lagoon over the ~100-year study period, due to a strong reduction in the area of the intertidal basin. The basin infilling scenario is associated with the most important adjustments of the tidal circulation (i.e., increases in the flood velocities and delays in the ebb tide), together with an increase in the cumulative discharges of the tidal inlets. Under sea-level rise and in the basin infilling scenario, the salt marshes and tidal flats experience increases in the tidal range and current asymmetry. Basin infilling changes the sediment flushing capacity of the lagoon, leading to the attenuation of the flood dominance in the main inlet and the strengthening of the flood dominance in the two secondary inlets. The predictions resulting from these scenarios provide very useful information on the long-term evolution of similar coastal lagoons that experience varying degrees of SLR. This study highlights the need for research focusing on the quantification of the physical and socio-economic impacts of SLR on lagoon systems, thus enabling the development of effective adaptation strategies.  相似文献   

5.
Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between -1.4 (+0.36/-2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater-tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In many countries, coastal planners strive to balance the demands between civil, commercial strategy and environmental conversation interests for future development, particularly given the sea level rise in the 21 st century. Achieving a sustainable balance is often a dilemma, especially in low-lying coastal areas where dams in inland river basin are trapping significant amounts of fluvial sediments. We recently investigated the shore of Bohai Bay in northern China where there has been a severe increase in sea level following a program of large-scale coastal reclamation and infrastructure development over the last five decades. To investigate this trend, we obtained sediment cores from near-shore in Bohai Bay, which were dated by ~(137)Cs and ~(210)Pb radionuclides to determine the sedimentation rates for the last 50 years. The average sedimentation rates of Bohai Bay exceeded 10 mm yr~(-1) before 1963, which was much higher than the rate of local sea-level rise. However, our results showed an overall decreasing sedimentation rate after 1963, which was not able to compensate for the increasing relative sea-level rise in that period. In addition, our results revealed that erosion occurred after the 1980 s in the shallow sea area of Bohai Bay. We suggest that this situation places the Bohai Bay coast at a greater risk of inundation and erosion within the next few decades than previously thought, especially in the large new reclamation area. This study may be a case study for many other shallow sea areas of the muddy coast if the sea level continues to rise rapidly and the sediment delivered by rivers continues to decrease.  相似文献   

8.
In order to maintain an elevation in the intertidal zone at which marsh vegetation can survive, vertical accretion of the marsh surface must take place at a rate at least equal to the rate of relative sea-level rise. Net vertical accretion of coastal marshes is a result of interactions between tidal imports, vegetation and depositional processes. All of these factors are affected, directly or indirectly, by alterations in marsh hydrology which might occur as a result of sea-level rise. The overall response of coastal marshes to relative sea-level rise depends upon the relative importance of the inorganic and organic components of the marsh soil and the impact of increased hydroperiod on net accumulation. The varied combination of factors contributing to sediment supply, and their complexity at the scale of individual marshes, means that predicting the response of suspended sediment concentration in marsh floodwater to any changes which may occur as a result of sea-level rise, at anything other than the local scale is unlikely to be accurate. The impact of sea-level rise on net below-ground production is also complex. The sensitivity of certain species to waterlogging and soil chemical changes could result in a change in species composition or the migration of vegetation zones. Consequently, predicting the net impact of sea-level rise on organic matter accumulation is fraught with difficulties and requires improved understanding of interactions between vegetation, soil and hydrologic processes.  相似文献   

9.
The landscape setting of estuaries varies widely and is an important aspect of determining how they evolve. This paper focusses on alluvial estuaries in river valleys and how they respond to sea level rise. We examine the implications of marine transgression, as a response to sea level rise, where the estuary moves upwards and landwards to maintain its position in the tidal frame (so-called stratigraphic rollover). Here we encapsulate such kinematic movement of the estuary morphology using a ‘morphokinematic’ model, to assess the potential response to sea level rise and sediment supply. The model of the estuary form includes a single convergent channel, intertidal and surrounding floodplains (the valley) and allows the relative importance of the space available for deposition of sediments, the accommodation space, to be investigated as a function of rates of sea level rise and sediment supply. The transgression of the system is determined using a sediment mass balance, taking account of any supply from the river and marine environment. Model results confirm that the transgression distance, measured as the distance the entity moves landward, varies in proportion to the change in accommodation space, which mainly depends on the floodplain area. As the size of the floodplain reduces, the transgression distance is less and the system becomes much more sensitive to changes in the rate of sea level rise or changes in sediment supply. The greater demand for sediment when a floodplain is present results in greater cannibalization of the estuary form (i.e. greater landward movement) to meet the sediment demand. When the floodplain is disconnected from the estuary, the synergistic relationship is lost and the accommodation space increases. The capacity for restoration will depend on the availability of sediment and the prevailing rate of sea level rise.  相似文献   

10.
One habitat management requirement forced by 21st century relative sea‐level rise (RSLR), will be the need to re‐comprehend the dimensions of long‐term transgressive behaviour of coastal systems being forced by such RSLR. Fresh approaches to the conceptual modelling and subsequent implementation of new coastal and peri‐marine habitats will be required. There is concern that existing approaches to forecasting coastal systems development (and by implication their associated scarce coastal habitats) over the next century depend on a certain premise of orderly spatial succession of habitats. This assumption is shown to be questionable given the possible future rates of RSLR, magnitude of shoreline retreat and the lack of coastal sediment to maintain the protective morphologies to low‐energy coastal habitats. Of these issues, sediment deficiency is regarded as one of the major problem for future habitat development. Examples of contemporary behaviour of UK coasts show evidence of coastal sediment starvation resulting from relatively stable RSLR, anthropogenic sealing of coastal sources, and intercepted coastal sediment pathways, which together force segmentation of coastal systems. From these examples key principles are deduced which may prejudice the existence of future habitats: accelerated future sediment demand due to RSLR may not be met by supply and, if short‐ to medium‐term hold‐the‐line policies predominate, long‐term strategies for managed realignment and habitat enhancement may prove impossible goals. Methods of contemporary sediment husbandry may help sustain some habitats in place but otherwise, instead of integrated coastal organization, managers may need to consider coastal breakdown, segmentation and habitat reduction as the basis of 21st century coastal evolution and planning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Kenya     
The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5° S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25°C and 31°C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50–80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.  相似文献   

12.
Past and future evolution in the Thames Estuary   总被引:1,自引:0,他引:1  
In order to manage estuaries effectively, it is important to be able to predict how they are likely to change in the future, both to natural and anthropogenic forcing. This paper looks at historical morphological development of the Thames Estuary, taking into account the effect of human intervention, and uses the ASMITA morphological model to predict the long-term evolution of the estuary into the future, assuming either historic rates of sea-level rise or accelerated sea-level rise. The historical sediment budget for the Thames Estuary was examined and source and sink terms, including fluvial sediment supply and historical dredging rates, were included in the ASMITA model. ASMITA predictions showed good overall agreement with the historical data, highlighting the benefits of detailed historical review and the inclusion of anthropogenic effects in the model. Future ASMITA predictions for the period 2000 to 2100 suggest that, under both historical and accelerated sea-level rise scenarios, the estuary will experience accretion, but, for the accelerated sea-level rise scenario, accretion will be at a slower rate than sea level rise. With accelerated sea-level rise, intertidal profiles were predicted to be up to 0.5 m lower with respect to high water.  相似文献   

13.
Studies on distribution and habitats of mangrove molluscs of the Bonny and New Calabar rivers (Niger Delta) were made at ten shore stations from the river mouth to the tidal fresh water zone. Forty-three species were collected and thirty-nine were identified. Investigations into tidal zonation patterns showed that molluscs inhabited the high, mid and low intertidal stretches of the shore. In the tidal fresh water and low-salinity brackish water zone, the low intertidal is poor in molluscs. Many species have restricted salinity ranges occuring either in the high or low salinity limits. The collected data on occurence of species were analyzed by different methods from multivariate data analysis, namely cluster analysis, principal component analysis and partial least squares. These allowed to visualize structures among mollusc species and stations according to distribution patterns and to estimate the degree of relation between these patterns and salinity.  相似文献   

14.
Mainstem–floodplain material exchange in the tidal freshwater reach of major rivers may lead to significant sequestration of riverine sediment, but this zone remains understudied compared to adjacent fluvial and marine environments. This knowledge gap prompts investigation of floodplain-incising tidal channels found along the banks of tidal rivers and their role in facilitating water and suspended-sediment fluxes between mainstem and floodplain. To evaluate this role, and how it evolves along the tidal river and with time, we measured water level, flow velocity, temperature, and suspended-sediment concentration (SSC) in four tidal channels along the tidal Amazon River, Brazil. Eleven deployments were made during low, rising, high, and falling seasonal Amazon discharge. Generally, channels export high-SSC water from the mainstem to the tidal floodplain on flood tides and transfer low-SSC water back to the mainstem on ebbs. Along the length of the tidal river, the interaction between tidal and seasonal water-level variations and channel–floodplain morphology is a primary control on tidal-channel sediment dynamics. Close to the river mouth, where tides are large, this interaction produces transient flow features and current-induced sediment resuspension, but the importance of these processes decreases with distance upstream. Although the magnitude of the exchange of water and sediment between mainstem and floodplain via tidal channels is a small percentage of the total mainstem discharge in this large tidal-river system, tidal channels are important conduits for material flux between these two environments. This flux is critical to resisting floodplain submergence during times of rising sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Geomorphological characteristics of tidal basins control hydrodynamics and sediment transport potential within such basins, for example, by adjusting the balance in tidal asymmetry. In this study we examine the effects of entrance geometry on tidal velocity asymmetry, slack water asymmetry, bed shear stress patterns and hypsometric profile shapes by comparison of six shallow meso-tidal basins of Tauranga Harbour, New Zealand. Numerical model results show how tidal distortion increases with distance from a basin entrance. A simple ratio between basin width and entrance width defines levels of basin dilation. Sub-basins with a constricted geometry and deep entrance channels are associated with small bed shear stress values and high rates of flood-directed tidal velocity asymmetry in the sheltered basin centres, indicating a large potential for sediment deposition of larger particles. Moreover, slack water asymmetry within these basins is weakly ebb-directed, indicating a small potential for transport of fine sediments out of the basins. The constricted depositional basins are characterized by convex hypsometric profiles with elevated intertidal regions. Unconstricted geometries are associated with larger bed shear stress values and more ebb-directed tidal velocity asymmetry within basin centres, suggesting limited potential for overall sediment deposition. The slack tide duration asymmetry is weakly flood-dominant indicating that limited input of fine sediment into the basins is possible. The comparatively high-energy conditions within these exposed basins are associated with a less convex hypsometric intertidal profile. The ability to estimate tidal asymmetries is advantageous when developing management strategies related to ecosystem functioning, navigability or coastal protection in specific geomorphic settings. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
It is possible that climate changes and sea level fluctuations (allogenic processes) are and will cause major changes in mangrove dynamics. However, other driving forces may be significantly affecting this system. Distinguishing allogenic and autogenic influence on mangroves is a challenging question, because mechanisms related to the natural dynamics of depositional environments (autogenic processes) have strong influences on the establishment and degradation of mangroves. Thus, impacts on mangroves caused by autogenic processes may be erroneously attributed to allogenic mechanisms. Therefore, it is imperative to identify the ‘fingerprint’ of global changes in modern mangrove dynamics. In order to characterize the influence of these forces on mangroves, this work has used geomorphology and vegetation maps integrated with sedimentological and palynological data, radiocarbon dating, as well as δ13C, δ15N and C/N from sedimentary organic matter. The inter‐proxy analyses reveal an estuarine influence with mangrove development along the Ceará Mirim River, north‐eastern Brazil, since ~6920 cal yr bp , after the post‐glacial sea level rise. Relative sea level (RSL) has been stable during the middle and late Holocene. Mangrove establishment along this fluvial valley begins at about 6920 cal yr bp , caused by the sea‐level stabilization, an allogenic influence. However, after its establishment, wetland dynamics were mainly controlled by autogenic factors, related to channel migrations, instead of allogenic process. Some influence of sea‐level and climate changes on mangrove dynamics in this estuarine channel have been weakened by more intense tidal channels activities. Therefore, the expansion and contraction of mangrove areas along the estuary of the Ceará Mirim River since 6920 cal yr bp has been mainly influenced by channel dynamics that regulate the accretion and erosion of mangrove substrates. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Abstract

This work presents a method for calculating the contributions of sea-level rise and urban growth to flood risk in coastal flood plains. The method consists of hydraulic/hydrological, urban growth and flood-damage quantification modules. The hydraulic/hydrological module estimates peak annual flows to generate flood stages impacted by sea-level rise within flood plains. A model for urban growth predicts patterns of urbanization within flood plains over the period 2010–2050. The flood-damage quantification module merges flood maps and urbanization predictions to calculate the expected annual flood damage (EAFD) for given scenarios of sea-level rise. The method is illustrated with an application to the Tijuana River of southern California, USA, and northwestern Mexico, where the EAFD is predicted to increase by over US$100 million because of sea-level rise of 0.25–1.0 m and urban growth by the year 2050. It is shown that urbanization plays a principal role in increasing the EAFD in the study area for the range of sea-level rise considered.

Editor Z.W. Kundzewicz

Citation Garcia, E.S. and Loáiciga, H.A., 2013. Sea-level rise and flooding in coastal riverine flood plains. Hydrological Sciences Journal, 59 (1), 204–220.  相似文献   

19.
The paper addresses the individual and collective contribution of different forcing factors (tides, wind waves, and sea-level rise) to the dynamics of sediment in coastal areas. The results are obtained from simulations with the General Estuarine Transport Model coupled with a sediment transport model. The wave-induced bed shear stress is formulated using a simple model based on the concept that the turbulent kinetic energy (TKE) associated with wind waves is a function of orbital velocity, the latter depending on the wave height and water depth. A theory is presented explaining the controls of sediment dynamics by the TKE produced by tides and wind waves. Several scenarios were developed aiming at revealing possible trends resulting from realistic (observed or expected) changes in sea level and wave magnitude. The simulations demonstrate that these changes not only influence the concentration of sediment, which is very sensitive to the magnitude of the external forcing, but also the temporal variability patterns. The joint effect of tides and wave-induced bed shear stress revealed by the comparison between theoretical results and simulations is well pronounced. The intercomparison between different scenarios demonstrates that the spatial patterns of erosion and deposition are very sensitive to the magnitude of wind waves and sea-level rise. Under a changing climate, forcing the horizontal distribution of sediments adjusts mainly through a change in the balance of export and import of sediment from the intertidal basins. The strongest signal associated with this adjustment is simulated North of the barrier islands where the evolution of sedimentation gives an integrated picture of the processes in tidal basins.  相似文献   

20.
Due to changes in relative sea level of order 100 m, the contribution of tides and waves to net bed shear stress in shelf sea regions has varied considerably over the Late Glacial and Holocene. Understanding the spatial and temporal distribution of this ratio leads to a deeper understanding of the erosion and deposition of sediments over the shelf seas throughout this time period. Tidal and wave models are here applied to palaeo time slices of the northwest European shelf seas over the last 12,000 years. The model simulations include a series of sensitivity tests to account for the influence of interannual variability in wind conditions on the resulting bed shear stress. The results show that there has been a significant decrease over the last 12,000 years in shelf-scale mobilisation of coarse sediment. Since there was a lower magnitude of wave orbital velocity penetrating to the sea bed as a result of increasing relative sea level, this reduction in sediment mobilisation was primarily controlled by a shelf-scale decrease in wave-induced bed shear stress over the last 12,000 years. The predictions of mean and residual bed shear stress for the modelled palaeo time slices are a useful tool with which to inform site-selection and subsequent interpretation of sediment cores. In addition, the modelled reconstructions of palaeo tidal range over the shelf seas demonstrates the potential errors associated with assuming a present-day tidal range when correcting palaeo sea-level proxies from their deposited datum (e.g. palaeo mean high water spring tide) to palaeo mean sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号