首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remotely sensed observations from recent missions (e.g., GRAIL, Kaguya, Chandrayaan‐1) have been interpreted as indicating that the deep crust and upper mantle are close to or at the lunar surface in many large impact basins (e.g., Crisium, Apollo, Moscoviense). If this is correct, the capability of either impact or volcanic processes to transport mantle lithologies to the lunar surface should be enhanced in these regions. Somewhat problematic to these observations and interpretations is that examples of mantle lithologies in the lunar sample collection (Apollo Program, Luna Program, lunar meteorites) are at best ambiguous. Dunite xenoliths in high‐Ti mare basalt 74275 are one of these ambiguous examples. In this high‐Ti mare basalt, olivine occurs in three generations: olivine associated with dunite xenoliths, olivine megacrysts, and olivine microphenocrysts. The dunite xenoliths are anhedral in shape and are generally greater than 800 μm in diameter. The interior of the xenoliths are fairly homogeneous with regard to many divalent cations. For example, the Mg# (Mg/Mg + Fe × 100) ranges from 82 to 83 in their interiors and decreases from 82 to 68 over the 10–30 μm wide outer rim. Titanium and phosphorus X‐ray maps of the xenolith illustrate that these slow diffusing elements preserve primary cumulate zoning textures. These textures indicate that the xenoliths consist of many individual olivine grains approximately 150–200 μm in diameter with low Ti, Al, and P cores. These highly incompatible elements are enriched in the outer Fe‐rich rims of the xenoliths and slightly enriched in the rims of the individual olivine grains. Highly compatible elements in olivine such as Ni exhibit a decrease in the rim surrounding the xenolith, an increase in the incompatible element depleted cores of the individual olivine grains, and a slight decrease in the “interior rims” of the individual olivine grains. Inferred melt composition, liquid lines of descent, and zoning profiles enable the reconstruction of the petrogenesis of the dunite xenoliths. Preservation of primary magmatic zoning (Ti, P, Al) and lack of textures similar to high‐pressure mineral assemblages exhibited by the Mg‐suite (Shearer et al. 2015) indicate that these xenoliths do not represent deep crustal or shallow mantle lithologies. Further, they are chemically and mineralogically distinct from Mg‐suite dunites identified from the Apollo 17 site. More likely, they represent olivine cumulates that crystallized from a low‐Ti mare basalt at intermediate to shallow crustal levels. The parent basalt to the dunite xenolith lithology was more primitive than low‐Ti basalts thus far returned from the Moon. Furthermore, this parental magma and its more evolved daughter magmas are not represented in the basalt sample suite returned from the Taurus‐Littrow Valley by the Apollo 17 mission. The dunite xenolith records several episodes of crystallization and re‐equilibration. During the last episode of re‐equilibration, the dunite cumulate was sampled by the 74275 high‐Ti basalt and transported over a period of 30–70 days to the lunar surface.  相似文献   

2.
Abstract— We petrologically examined the Miller Range (MIL) 03346 nakhlite. The main‐phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36–38Fs24–22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa ≥ 55) and show normal zoning toward ferroan rims (Fa ≤ 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y‐) 000593. Although magnesian olivines of Y‐000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y‐000593.  相似文献   

3.
Abstract— Two dark lithic fragments and matrix of the Krymka LL3.1 chondrite were mineralogically and chemically studied in detail. These objects are characterised by the following chemical and mineralogical characteristics, which distinguish them from the host chondrite Krymka: (1) bulk chemical analyses revealed low totals (systematically lower than 94 wt%) due to high porosity; (2) enrichment in FeO and depletion in S, MgO and SiO2 due to a high abundance of Fe‐rich silicates and low sulfide abundance; (3) fine‐grained, almost chondrule‐free texture with predominance of a porous, cryptocrystalline groundmass and fine grains; (4) occurrence of a small amount of once‐molten material (microchondrules) enclosed in fine‐grained materials; (5) occurrence of accretionary features, especially unique accretionary spherules; (6) high abundance of small calcium‐ aluminium‐rich inclusions (CAIs) in one of the fine‐grained fragments. It is suggested that the abundance of CAIs in this fragment is one of the highest ever found in an ordinary chondrite. Accretionary, fine‐grained spherules within one of the fragments bear fundamental information about the initial stages of accretion as well as on the evolution of the clast, its incorporation, and history within the bulk rock of Krymka. The differences in porosity, bulk composition, and mineralogy of cores and rims of the fine‐grained spherulitic objects allow us to speculate on the following processes: (1) Low velocity accretion of tiny silicate grains onto the surface of coarse metal or silicate grains in a dusty region of the nebula is the beginning of the formation of accretionary, porous (fluffy) silicate spherules. (2) Within a dusty environment with decreasing silicate/(metal + sulfide) ratio the porous spherules collected abundant metal and sulfide particles together with silicate dust, which formed an accretionary rim. Variations of the silicate/(sulfide + metal) ratio in the dusty nebular environment result in the formation of multi‐layered rims on the surface of the silicate‐rich spherules. (3) Soft accretion and lithification of rimmed, fluffy spherules, fine‐grained, silicate‐rich dust, metal‐sulfide particles, CAIs, silicate‐rich microchondrules, and coarse silicate grains and fragments followed. (4) After low‐temperature processing of the primary, accretionary rock collisional fragmentation occurred, the fragments were subsequently coated by fine‐grained material, which was highly oxidized and depleted in sulfides. (5) In a final stage this accretionary “dusty” rock was incorporated as a fragment within the Krymka host.  相似文献   

4.
Northwest Africa (NWA) 4898 is the only low‐Ti, high‐Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12–62Fs25–62Wo11–36), which display a continuous trend from Mg‐rich cores toward Ca‐rich mantles and then to Fe‐rich rims. Plagioclase has relatively restricted compositions (An87–96Or0–1Ab4–13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high‐Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high‐Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high‐Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed‐system fractional crystallization.  相似文献   

5.
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions.  相似文献   

6.
An amoeboid olivine inclusion in CK3 NWA 1559 (0.54 × 1.3 mm) consists of a diopside‐rich interior (approximately 35 vol%) and an olivine‐rich rim (approximately 65 vol%). It is the first AOI to be described in CK chondrites; the apparent paucity of these inclusions is due to extensive parent‐body recrystallization. The AOI interior contains irregular 3–15 μm‐sized Al‐bearing diopside grains (approximately 70 vol%), 2–20 μm‐sized pores (approximately 30 vol%), and traces of approximately 2 μm plagioclase grains. The 75–160 μm‐thick rim contains 20–130 μm‐sized ferroan olivine grains, some with 120º triple junctions. A few coarse (25–50 μm‐sized) patches of plagioclase with 2–18 μm‐thick diopside rinds occur in several places just beneath the rim. The occurrence of olivine rims around AOI‐1 and around many AOIs in CV3 Allende suggests that CK and CV AOIs formed by the acquisition of porous forsteritic rims around fine‐grained, rimless CAIs that consisted of diopside, anorthite, melilite, and spinel. Individual AOIs in carbonaceous chondrites may have formed after transient heating events melted their olivine rims as well as portions of the underlying interiors. In AOI‐1, coarse plagioclase grains with diopside rinds crystallized immediately below the olivine rim. Secondary parent‐body alteration transformed forsterite in the rims of CV and CK AOIs into more‐ferroan olivine. Some of the abundant pores in the interior of AOI‐1 may have formed during aqueous alteration after fine‐grained melilite and anorthite were leached out. Chondrite groups with large chondrules tend to have large AOIs. AOIs that formed in dust‐rich nebular regions (where CV and CK chondrites later accreted) tend to be larger than AOIs from less‐dusty regions.  相似文献   

7.
Abstract— The Yamato nakhlites, Y‐000593, Y‐000749, and Y‐000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle‐stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late‐stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite‐magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite‐magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.  相似文献   

8.
Abstract— Two groups of chondrules in the Murchison CM chondrite, which have previously been identified on the basis of FeO in the chondrule grains, are readily identified from cathodoluminescence (CL) and belong to those of the ordinary chondrite group A and B chondrules of Sears et al. (1992a). All chondrules are surrounded by fine-grained rims containing forsterite with bright red CL, but on group A chondrules an outer thin rim grades into a much thicker rim, with a lower density of forsterite grains, which in turn grades into the central chondrule. Group B chondrules have only the thin outer rim with a high density of small forsterite grains. This is the first time an unequivocal correlation has been observed between chondrule rim thickness and the composition of the object on which the rim is located. We suggest that while all objects in the meteorite (group B chondrules, refractory inclusions, mineral and chondrule fragments, clasts) acquired a very thin rim during processing in a wet regolith, the thick rims on group A chondrules were formed by aqueous alteration of precursor metal- and sulfide-rich rims which are a characteristic of group A chondrules in ordinary chondrites.  相似文献   

9.
Abstract— Five basaltic meteorites from the LaPaz ice field are paired on the basis of their mineralogy and texture, and represent a unique basalt type distinct from those in the Apollo or Luna sample collections. LaPaz Icefield (LAP) 02205, LAP 02224, LAP 02226, LAP 02436 and LAP 03632 all contain plagioclase, pyroxene, ilmenite, spinel, olivine, and minor troilite, metal, phosphate, baddeleyite and silica (cristobalite). Brown glassy melt veins are ubiquitous and cross the primary igneous texture. Plagioclase, the major mineral and occurring as laths in a subophitic texture, is of narrow compositional range, from An85–89. Pyroxene, also a major mineral, is strongly zoned, from augite and pigeonite cores to very iron‐rich rims. Ilmenite laths comprise approximately 3–5% of the basalts. Spinels show a large compositional range, comparable to that documented in Apollo 15 basalts, indicating an early chromite‐rich stage followed by an intermediate to late stage with Cr‐rich ulvöspinel. Relatively large, subhedral to skeletal olivine crystals (Fo46–62) are sparse, and are too Forich to be in equilibrium with the bulk rock, indicating that these are xenocrysts rather than phenocrysts. The presence of melt veins with a similar composition to the bulk rock, maskelynitized plagioclase feldspar, and metastable cristobalite indicate that these rocks underwent significant shock, between 30 and 50 GPa. Calculated oxygen fugacity, using spinel‐ilmenite‐iron metal equilibria, is within the range defined by previous studies of lunar materials. The bulk composition (low MgO) and low calculated temperatures, together with modelling calculations, indicate an origin by fractional crystallization of a more primitive low TiO2 parent liquid similar to Apollo 12 olivine basalt.  相似文献   

10.
Abstract— Fine‐grained, optically opaque rims coat individual olivine and pyroxene grains in CM matrices and chondrules. Bulk chemical analyses and observations of these rims indicate the presence of phyllosilicates and disseminated opaques. Because phyllosilicates could not have survived the chondrule formation process, chondrule silicate rims must have formed entirely by late‐state aqueous reactions. As such, these textures provide a useful benchmark for isolating alteration features from more complex CM matrix materials. Both chondrule silicate and matrix silicate rims exhibit morphological features commonly associated with advancing stages of replacement reactions in terrestrial serpentinites. Contacts between many matrix silicate rims and the adjacent matrix materials suggest that these rims formed entirely by aqueous reactions in a parent‐body setting. This contrasts with previous assertions that rim textures can only form by the accretion of nebular dust but does not imply an origin for the rims surrounding other types of CM core components, such as chondrules.  相似文献   

11.
Abstract— LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low‐Ti (3.21–3.43% TiO2) low‐Al (9.93–10.45% Al2O3), and low‐K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late‐stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar‐wind‐implanted gases. The stones have a comparable major element composition and petrography to low‐Ti, low‐Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt.  相似文献   

12.
New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low‐Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe‐rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high‐Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study.  相似文献   

13.
Abstract— Wark‐Lovering rims of six calcium‐aluminum‐rich inclusions (CAIs) representing the main CAI types and groups in Allende, Efremovka and Vigarano were microsurgically separated and analysed by neutron activation analysis (NAA). All the rims have similar ~4x enrichments, relative to the interiors, of highly refractory lithophile and siderophile elements. The NAA results are confirmed by ion microprobe and scanning electron microscope (SEM) analyses of rim perovskites and rim metal grains. Less refractory Eu, Yb, V, Sr, Ca and Ni are less enriched in the rims. The refractory element patterns in the rims parallel the patterns in the outer parts of the CAIs. In particular, the rims on type B1 CAIs have the igneously fractionated rare earth element (REE) pattern of the melilite mantle below the rim and not the REE pattern of the bulk CAI, proving that the refractory elements in the rims were derived from the outer mantle and were not condensates onto the CAIs. The refractory elements were enriched in an Al2O3‐rich residue <50 μm thick after the most volatile ~80% of the outermost 200 μm of each CAI had been volatilized, including much Mg, Si and Ca. Some volatilization occurred below the rim, and created refractory partial melts that crystallized hibonite and gehlenitic melilite. The required “flash heating” probably exceeded 2000 °C, but for only a few seconds, in order to melt only the outer CAI and to unselectively volatilize slow‐diffusing O isotopes which show no mass fractionation in the rim. The volatilization did, however, produce “heavy” mass‐fractionated Mg in rims. In some CAIs this was later obscured when “normal” Mg diffused in from accreted olivine grains at relatively high temperature (not the lower temperature meteorite metamorphism) and created the ~50 μm set of monomineralic rim layers of pyroxene, melilite and spinel.  相似文献   

14.
The surfaces of airless bodies, such as the Moon and asteroids, are subject to space weathering, which alters the mineralogy of the upper tens of nanometers of grain surfaces. Atom probe tomography (APT) has the appropriate 3‐D spatial resolution and analytical sensitivity to investigate such features at the nanometer scale. Here, we demonstrate that APT can be successfully used to characterize the composition and texture of space weathering products in ilmenite from Apollo 17 sample 71501 at near‐atomic resolution. Two of the studied nanotips sampled the top surface of the space‐weathered grain, while another nanotip sampled the ilmenite at about 50 nm below the surface. These nanotips contain small nanophase Fe particles (~3 to 10 nm diameter), with these particles becoming less frequent with depth. One of the nanotips contains a sequence of space weathering products, compositional zoning, and a void space (~15 nm in diameter) which we interpret as a vesicle generated by solar wind irradiation. No noble gases were detected in this vesicle, although there is evidence for 4He elsewhere in the nanotip. This lunar soil grain exhibits the same space weathering features that have been well documented in transmission electron microscope studies of lunar and Itokawa asteroidal regolith grains.  相似文献   

15.
We have conducted scanning electron microscope (SEM) and transmission electron microscope (TEM) studies of a variety of occurrences of matrix in the reduced CV3 chondrite breccia Vigarano. Matrix, which occurs as clastic interchondrule material and finer‐grained rims, is dominated by morphologically variable olivines that host submicron, hercynitic spinel, and carbonaceous inclusions. Clastic matrix and fine‐grained rims show significant differences in their olivine morphologies, abundance, and composition of olivine inclusions, and characteristics of the carbonaceous matter. We suggest that these differences are the result of different degrees of alteration of clastic matrix and rims and are not due to variability in their precursor materials. Textural and compositional characteristics of olivine in the matrix are consistent with formation by growth, possibly from an amorphous precursor material during asteroidal metamorphism, in the presence of limited quantities of aqueous fluids. Spinel inclusions in olivine may be nebular condensates that acted as seeds for nucleation of olivine or may have formed during metamorphism and were subsequently overgrown by olivine. Carbonaceous material occurs as nanometer‐sized inclusions within olivine in both fine‐grained rims and clastic matrix, but is most abundant as 100–200 nm grains, interstitial to matrix olivines. Most carbonaceous material is amorphous, but poorly graphitized carbon (PGC) also occurs as a minor component in both olivine inclusions and interstitial C. The widespread occurrence of fine‐grained amorphous carbon grains in the interstitial regions between olivine grains may preserve the distribution and grain size of nebular organic material. No clear textural relationships exist between carbonaceous grains and the other mineralogical components of Vigarano matrix that could help constrain the origin of the organic grains (i.e., evidence for Fischer‐Tropsch‐type reactions). Finally, there are considerable differences between matrix olivines in Vigarano in comparison with those in oxidized CV3 chondrites. In particular, the mineralogy and morphology of the matrix olivines and the nature, composition, and distribution of inclusions in the olivine grains are distinct. Based on these differences, we conclude that matrix in the oxidized CV3 chondrites could not have formed by thermal processing of Vigarano‐like material.  相似文献   

16.
Composition of the Comet dust obtained by the dust impact analyzer on the Halley probes indicated that the comet dust is a mixture of silicate and carbonaceous material. The collected interplanetary dust particles (IDP's) are fluffy and composite, having grains of several different types stuck together. Using discrete dipole approximation (DDA) we study the scattering properties of composite grains. In particular, we study the angular distribution of the scattered intensity and linear polarization of composite grains. We assume that the composite grains are made up of a host silicate sphere/spheroid with the inclusions of graphite. Results of our calculations on the composite grains show that the angle of maximum polarization shifts, and the degree of polarization varies with the volume fraction of the inclusions. We use these results on the composite grains to interpret the observed scattering in cometary dust.  相似文献   

17.
Two processes have been proposed to explain observations of crystalline silicate minerals in comets and in protostellar sources, both of which rely on the thermal annealing of amorphous grains. First, high temperatures generated by nebular shock processes can rapidly produce crystalline magnesium silicate grains and will simultaneously produce a population of crystalline iron silicates whose average grain size is ∼10-15% that of the magnesium silicate minerals. Second, exposure of amorphous silicate grains to hot nebular environments can produce crystalline magnesium silicates that might then be transported outward to regions of comet formation. At the higher temperatures required for annealing amorphous iron silicates to crystallinity the evaporative lifetime of the grains is much shorter than a single orbital period where such temperatures are found in the nebula. Thermal annealing is therefore unable to produce crystalline iron silicate grains for inclusion into comets unless such grains are very quickly transported away from the hot inner nebula. It follows that observation of pure crystalline magnesium silicate minerals in comets or protostars is a direct measure of the importance of simple thermal annealing of grains in the innermost regions of protostellar nebulae followed by dust and gas transport to the outer nebula. The presence of crystalline iron silicates would signal the action of transient processes such as shock heating that can produce crystalline iron, magnesium and mixed iron-magnesium silicate minerals. These different scenarios result in very different predictions for the organic content of protostellar systems.  相似文献   

18.
Abstract— New data are reported from five previously unanalyzed Apollo 12 mare basalts that are incorporated into an evaluation of previous petrogenetic models and classification schemes for these basalts. This paper proposes a classification for Apollo 12 mare basalts on the basis of whole-rock Mg# [molar 100*(Mg/(Mg+Fe))] and Rb/Sr ratio (analyzed by isotope dilution), whereby the ilmenite, olivine, and pigeonite basalt groups are readily distinguished from each other. Scrutiny of the Apollo 12 feldspathic “suite” demonstrates that two of the three basalts previously assigned to this group (12031, 12038, 12072) can be reclassified: 12031 is a plagioclase-rich pigeonite basalt (Nyquist et al, 1979); and 12072 is an olivine basalt Only basalt 12038 stands out as a unique sample (Nyquist et al., 1981) to the Apollo 12 she, but whether this represents a single sample from another flow at the Apollo 12 site or is exotic to this site is equivocal. The question of whether the olivine and pigeonite basalt suites are co-magmatic is addressed by incompatible trace-element chemistry: the trends defined by these two suites when Co/Sm and Sm/Eu ratios are plotted against Rb/Sr ratio demonstrate that these two basaltic types cannot be co-magmatic. Crystal fractionation/accumulation paths have been calculated and show that neither the pigeonite, olivine, or ilmenite basalts are related by this process. Each suite requires a distinct and separate source region. This study also examines sample heterogeneity and the degree to which whole-rock analyses are representative, which is critical when petrogenetic interpretation is undertaken. Sample heterogeneity has been investigated petrographically (inhomogeneous mineral distribution) with consideration of duplicate analyses, and whether a specific sample (using average data) plots consistently upon a fractionation trend when a number of different compositional parameters are considered. Using these criteria, four basalts have been identified where reported analyses are not representative of the whole-rock composition: 12005, an ilmenite basalt; 12006 and 12036, olivine basalts; and 12031 previously classified as a feldspathic basalt, but reclassified as part of the pigeonite suite (Nyquist et al., 1979).  相似文献   

19.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

20.
Abstract– Two suites of lunar impact melt samples have been measured in NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. Suite 1 comprises seven Apollo 17 crystalline impact melt breccias and seven quenched glass equivalents. Suite 2 is made up of 15 additional impact melt samples (from Apollo 12, 15, 16, and 17) which exhibit a range of textures and compositions related to cooling conditions and glass abundance. A few of these samples have cooled slowly and fully crystallized, and thus have the same spectral properties as igneous rocks of similar texture and composition; they cannot be uniquely distinguished without geologic context. However, most of the impact melts and melt breccias contain either quantities of quenched glass and/or have developed microcrystalline nonequilibrium textures with well‐defined, diagnostic spectral properties. The microcrystalline textures are associated with a distinctive 600 nm absorption feature, apparently due to submicroscopic ilmenite inclusions in a transparent host (typically fine‐grained plagioclase). The reflectance properties of these lunar sample suites contribute to and constrain the identification and characterization of impact melts in remote sensing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号