首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K–Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes–Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes–Serra Branca–Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.  相似文献   

2.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   

3.
The Ceprano calvarium, found in 1994 in Italy and attributed to Homo cepranensis, is one of the most celebrated hominin remains of Europe. It was considered at least 700 ka-old until a recent investigation incorporating magnetostratigraphy and K-Ar ages from the literature assigned to the calvarium an age of ∼450 (+50, −100) ka. Here we pin down the age of the Ceprano calvarium to 353 ± 4 ka (±1σ external) by means of new 40Ar/39Ar dating on K-feldspars retrieved from the sediments that hosted the skull. In absence of evidence of reworking, this refined age sinks the conviction that H. cepranensis belonged to human evolution at the Brunhes–Matuyama boundary (c.a. 781 ka). Our refined age indicates that H. cepranensis lived in central Italy probably during the cold period of marine isotope stage (MIS) 10, and that despite his archaic morphology and lack of Neanderthal traits, he was contemporaneous with more advanced species such as H. heidelbergensis.  相似文献   

4.
The Latera caldera is a well-exposed volcano where more than 8 km3 of mafic silica-undersaturated potassic lavas, scoria and felsic ignimbrites were emplaced between 380 and 150 ka. Isotopic ages obtained by 40Ar/39Ar analysis of single sanidine crystals indicate at least four periods of explosive eruptions from the caldera. The initial period of caldera eruptions began at 232 ka with emplacement of trachytic pumice fallout and ignimbrite. They were closely followed by eruption of evolved phonolitic magma. After roughly 25 ky, several phonolitic ignimbrites were deposited, and they were followed by phreatomagmatic eruptions that produced trachytic ignimbrites and several smaller ash-flow units at 191 ka. Compositionally zoned magma then erupted from the northern caldera rim to produce widespread phonolitic tuffs, tephriphonolitic spatter, and scoria-bearing ignimbrites. After 40 ky of mafic surge deposit and scoria cone development around the caldera rim, a compositionally zoned pumice sequence was emplaced around a vent immediately northwest of the Latera caldera. This activity marks the end of large-scale explosive eruptions from the Latera volcano at 156 ka.  相似文献   

5.
6.
New high-precision single crystal sanidine 40Ar/39Ar ages for the Huckleberry Ridge Tuff (HRT), Yellowstone volcanic field, show that the three HRT members (A, B, and C) represent at least two different eruptions. The new 40Ar/39Ar ages (all ages calculated relative to the optimisation model of Renne et al., 2011) are: 2.135 ± 0.006 Ma, 2.131 ± 0.008 Ma, and 2.113 ± 0.004 Ma (2σ, full uncertainty propagation), for members A, B and C, respectively. Members A and B are within uncertainty of one another and both are more precise than, but in agreement with, previously published ages. Member C was erupted later than members A and B. HRT members A and B were deposited during the Reunion Normal Polarity Subchron (C2r.1n). Member C was deposited during Subchron C2r.1r. Previously published radiogenic and stable isotope data show that member C was sourced from an isotopically discrete magma with a higher fraction of crustal material than members A and B. The volume of the first HRT eruption is reduced by c. 12% from previous estimates and explosive eruptions from the Yellowstone volcanic field occurred more frequently, producing more homogeneous magma than was previously believed. High-precision 40Ar/39Ar dating is key for resolving the eruptive history of Yellowstone, temporal dissection of voluminous ignimbrites, and rigorous investigation of what constitutes a ‘super-eruption’.  相似文献   

7.
通过理论推导,提出了一种新的K-Ar、40Ar-39Ar等时线:40Ar/40K-36Ar/40K、40Ar/39Ar-36Ar/40Ar等时线。通过实例证明它与其它等时线方法可以进行相互检验。在一些不能利用其它等时线方法的情况下,新的40Ar/40K-36Ar/40K和40Ar/39Ar-36Ar/40Ar等时线方法可以充分显示它的使用价值和存在意义。  相似文献   

8.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

9.
The concepts involved in the construction and interpretation of inverse isochron diagrams used in 40Ar/39Ar geochronology are reviewed. The diagrams can be useful as a means of recognising atmospheric argon and excess 40Ar, incorporated in the mineral lattice, which cannot be recognised from 40Ar/39Ar spectra. The age established using an inverse isochron plot, unlike that yielded by a spectrum, is not affected by trapped argon 40Ar/36Ar ratios that are different from the atmospheric argon ratio (e.g. due to excess 40Ar), and may contribute to a better age interpretation. However, a heterogeneous distribution of excess 40Ar or heterogeneous argon loss can cause ‘false’ isochrons, with axial intercepts indicating an incorrect age and an incorrect trapped argon composition. Inconsistency between the ages from a spectrum and from the associated inverse isochron plot may indicate the degree of inaccuracy of isochrons. However, it is possible that both the spectrum and inverse isochron yield the same incorrect age. The importance of considering all possible interpretations before assigning an age to a specimen is stressed.  相似文献   

10.
Data reported in 40Ar/39Ar geochronology studies are commonly insufficient to allow computation of ages. This deficiency renders it difficult to compare ages based on different standards or constants, and often hinders critical evaluation of the results. Herein are presented an enumeration of the data that should be reported in all 40Ar/39Ar studies, including a discussion in support of these requirements. The minimum required data are identified and distinguished from parameters that are useful but may be derived from them by calculation. Finally, recommendations are made for metadata needed to document age calculations (e.g., from age spectrum or isochron analyses).  相似文献   

11.
High-precision 40Ar/39Ar ages for a series of proximal tuffs from the Toba super-volcano in Indonesia, and the Bishop Tuff and Lava Creek Tuff B in North America have been obtained. Core from Ocean Drilling Project Site 758 in the eastern equatorial Indian Ocean contains discrete tephra layers that we have geochemically correlated to the Young Toba Tuff (73.7 ± 0.3 ka), Middle Toba Tuff (502 ± 0.7 ka) and two eruptions (OTTA and OTTB) related to the Old Toba Tuff (792.4 ± 0.5 and 785.6 ± 0.7 ka, respectively) (40Ar/39Ar data reported as full external precision, 1 sigma). Within ODP 758 Termination IX is coincident with OTTB and hence this age tightly constrains the transition from Marine Isotope Stage 19–20 for the Indian Ocean. The core also preserves the location of the Australasian tektites, and the Matuyama-Brunhes boundary with Bayesian age-depth models used to determine the ages of these events, c. 786 and c. 784 ka, respectively. In North America, the Bishop Tuff (766.6 ± 0.4 ka) and Lava Creek Tuff B (627.0 ± 1.5 ka) have quantifiable stratigraphic relationships to the Matuyama-Brunhes boundary. Linear age-depth extrapolation, allowing for uncertainties associated with potential hiatuses in five different terrestrial sections, defines a geomagnetic reversal age of 789 ± 6 ka. Considering our data with respect to the previously published age data for the Matuyama-Brunhes boundary of Sagnotti et al. (2014), we suggest at the level of temporal resolution currently attainable using radioisotopic dating the last reversal of Earths geomagnetic field was isochronous. An overall Matuyama-Brunhes reversal age of 783.4 ± 0.6 ka is calculated, which allowing for inherent uncertainties in the astronomical dating approach, is indistinguishable from the LR04 stack age (780 ± 5 ka) for the geomagnetic boundary. Our high-precision age is 10 ± 2 ka older than the Matuyama-Brunhes boundary age of 773 ± 1 ka, as reported previously by Channell et al. (2010) for Atlantic Ocean records. As ODP 758 features in the LR04 marine stack, the high-precision 40Ar/39Ar ages determined here, as well as the Matuyama-Brunhes boundary age, can be used as temporally accurate and precise anchors for the Pleistocene time scale.  相似文献   

12.
40Ar/39Ar method is a high precision dating means, of which the age is obtained by contrasting the un- known sample with those of standards. Usually the age of standard is determined by K-Ar method in which the 38Ar spike should be added for measurement. However, the absolute concentration of 38Ar spike is measured through the calibrated standards in turn, al- though occasionally the concentration of 38Ar spike is determined by other dating methods, such as Rb-Sr, U-Pb methods, which is kn…  相似文献   

13.
The difficulty of isolating intact, mineralogically pure pedogenic crystals from cemented soil is one of the most significant obstacles to quantifying rates of soil formation, geomorphic processes, and climate change in arid regions. We evaluate the applicability of vacuum encapsulated 40Ar/39Ar geochronology to pedogenic palygorskite and sepiolite extracted from the 4 to 5 Ma, extant Mormon Mesa petrocalcic soil-geomorphic surface of southern Nevada, and from the 780 ka to 2 Ma Jornada Experimental Range La Mesa soil-geomorphic surface near Las Cruces, New Mexico. Selective dissolution of cements using NaOAc and Tiron, accompanied by particle size fractionation, was used to isolate the pedogenic Mg-phyllosilicates. Scanning electron microscopy, inductively-coupled plasma spectrometry, X-ray diffraction, gas chromatograph mass spectrometry, and Ar isotope analysis were used to determine whether extraction impacted palygorskite/sepiolite suitability for 40Ar/39Ar geochronology. We found no adverse morphological or mineralogical effects, but meaningful ages could not be obtained due to small amounts of old, detrital phyllosilicates in the samples. While the potential of pedogenic palygorskite and/or sepiolite for geochronology now seems limited, results from this study may prove relevant for samples from other, non-pedogenic surface environments. It is hoped that this work will encourage further research towards successful 40Ar/39Ar geochronology of pedogenic phyllosilicates, as well as inform future geochemical or isotopic studies of individual pedogenic mineral species.  相似文献   

14.
Magnetic sector mass spectrometers dominate the field of 40Ar/39Ar geochronology. Recent advances in quadrupole mass spectrometer technology, especially improvements in resolution, have increased the performance of these instruments to the extent that they can be used for isotopic determinations. We describe a triple filter quadrupole mass spectrometer (Hiden HAL 3F Series Pulse Ion Counting Triple Filter QMS) linked to an automated furnace extraction and cleaning system dedicated to 40Ar/39Ar incremental heating experiments.The instrument produces peaks with broad flat tops and a width of 0.9 amu at 10 cps height and 0.84 amu at 500,000 cps height on a 1 million cps high peak (peak width at 0.01‰ and 50% peak height respectively). This allows measurement of ratios of the main Ar peaks in the 1‰ range. Measurements of 1.6 × 10?12 mole of air reference gas over two years yields 40Ar/36Ar = 257.9 ± 1.3 (1σ, n = 34). The ability of the instrument to produce 40Ar/39Ar ages from rocks/minerals of a wide age range, reaching into the late Quaternary, are demonstrated by a series of tests and comparison with geochronological data from other studies and an in-house MAP 215-50 magnetic sector mass spectrometer. We demonstrate that high-end quadrupole systems can be used for routine 40Ar/39Ar dating purposes.  相似文献   

15.
We present new 40Ar/39Ar data for sanidine and biotite derived from volcanic ash layers that are intercalated in Pliocene and late Miocene astronomically dated sequences in the Mediterranean with the aim to solve existing inconsistencies in the intercalibration between the two independent absolute dating methods. 40Ar/39Ar sanidine ages are systematically younger by 0.7-2.3% than the astronomical ages for the same ash layers. The significance of the discrepancy disappears except for the upper Ptolemais ashes, which reveal the largest difference, if an improved full error propagation method is applied to calculate the absolute error in the 40Ar/39Ar ages. The total variance is dominated by that of the activity of the decay of 40K to 40Ar (∼70%) and that the amount of radiogenic 40Arp in the primary standard GA1550 biotite (∼15%). If the 40Ar/39Ar ages are calculated relative to an astronomically dated standard, the influence of these parameters is greatly reduced, resulting in a more reliable age and in a significant reduction of the error in 40Ar/39Ar dating.Astronomically calibrated ages for Taylor Creek Rhyolite (TCR) and Fish Canyon Tuff (FCT) sanidine are 28.53±0.02 and 28.21±0.04 Ma (±1 S.E.), respectively, if we start from the more reliable results of the Cretan A1 ash layer. The most likely explanation for the large discrepancy found for the younger Ptolemais ash layers (equivalent to FCT of 28.61 Ma) is an error in the tuning of this part of the sequence.  相似文献   

16.
New data on the age of epithermal gold-silver mineralization of Asachinskoe Deposit (southern Kamchatka) are obtained by the 40Ar/39Ar method of stage heating involving preirradiation of samples for 48 hours by fast neutron currents in a cadmium-plated reactor channel. Correlation with the earlier data on integral K/Ar dating and a laser variant of the 40Ar/39Ar method has been carried out. According to the structural orderliness revealed by high resolution X-ray analysis and infrared spectroscopy, potassic feldspars found in veins have been identified as a continuous series: maximum microcline → intermediate microcline → intermediate orthoclase → extreme orthoclase. The age of quartz-orthoclase vein 1 is 3.2 ± 0.2 Ma (the Piacenzian). A younger age, about 1.1 ± 0.3 Ma (the Early Pleistocene) is determined for a quartz-microcline vein with post-mineralization brecciation and recrystallization related to the basalt dike magmatism of this age.  相似文献   

17.
The back-arc region of the Izu-Bonin arc has complex bathymetric and structural features, which, due to repeated back-arc rifting and resumption of arc volcanism, have prevented us from understanding the volcano-tectonic history of the arc after 15 Ma. The laser-heating 40Ar/39Ar dating technique combined with high density sampling of volcanic rocks from the back-arc region of this arc successfully revealed the detailed temporal variation of volcanism related to the back-arc rifting. Based on the new 40Ar/39Ar dating results: (1) Back-arc rifting initiated at around 2.8 Ma in the middle part of the Izu-Bonin arc (30°30′N–32°30′N). Volcanism at the earliest stage of rifting is characterized by the basaltic volcanism from north–south-trending fissures and/or lines of vents. (2) Following this earliest stage of volcanism, at ca. 2.5 Ma, compositionally bimodal volcanism occurred and formed small cones in the wide area. This volcanism and rifting continued until about 1 Ma in the region west of the currently active rift zone. (3) After 1 Ma, active volcanism ceased in the area west of the currently active rift zone, and volcanism and rifting were confined to the currently active rift zone. The volcano-tectonic history of the back-arc region of the Izu-Bonin arc is an example of the earliest stage of back-arc rifting in the oceanic island arc. Age data on volcanics clearly indicate that volcanism changed its mode of activity, composition and locus along with a progress of rifting.  相似文献   

18.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5±0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5±0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

19.
This paper has reported the first application of 40Ar/39Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.  相似文献   

20.

This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号