首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches. Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area, the field survey, soil sample collection, laboratory experiment and Geographic Information System(GIS) spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths. The results revealed that the soil total organic carbon(TOC), active organic carbon(AOC) and nonactive organic carbon(NOC) contents ranged from 0.05–30.03 g/kg, 0.01–8.86 g/kg and 0.02–23.36 g/kg, respectively. The TOC, AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer, and the sequence of the content and change range within a single layer was TOCNOCAOC. Geostatistical analysis indicated that the TOC, AOC and NOC contents were commonly influenced by structural and random factors, and the influence magnitudes of these two factors were similar. The overall spatial trends of TOC, AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer, and the transition between high-and low-value areas was obvious, while the spatial variance was high. The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas. The distribution and depth of the sediment, agricultural land-use type, cropping system, fertilization method, tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC) components. Therefore, increasing the organic matter content, straw return, applying organic manure, adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River.  相似文献   

2.
The investigations on the organic carbon (OC) of core sediments were carried out in Chongming east tidal fiat (CM) during Scirpus mariqueter growing stage (from April to December 2004) in Yangtze Estuary. The Yangtze River annually transports a runoff discharge of 30,000 m^3/s, carrying about 480 million tons of sediments to the estuarine and coastal area, which formed a great OC pool. In the sampling spots, seven quadrats of 50 cm × 50 cm and five sediments cores of 20 cm deep (40 cm deep in December) were randomly established in order to collect vegetations and core sediments samples during the low tide each month except November. After pretreatment, the core sediments were sieved and their OC contents were measured according to the potassium dichromate method. The results show that the higher surface sediment OC content in summer comes from allochthonous terrigenous particle settlements on the Chongming east middle tidal fiat S. mariqueter zone. In autumn and winter, the decomposing of the defoliated S. mariqueter increases the surface sediments OC content. Settling velocity, sediment temperature and S. mariqueter growth are the main factors that can control the sediment carbon content. Summer is the “carbon losing” period of the tidal fiat sediments, while from September, it changes into the “carbon accumulating” period of sediment OC pool because of the decomposing of dead S. mariqueter community in the sediments. From this alternation of “carbon losing” period and “carbon accumulating” period, we conclude that carbon in the OC pool of the middle tidal fiat S. mariqueter zone sediments mainly comes from the atmospheric carbon rooted by S. mariqueter photosynthesis.  相似文献   

3.
中国亚热带地区造林对土壤碳周转的影响   总被引:5,自引:1,他引:4  
Afforestation in China’s subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests,plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover,we investigated SOC and its stable C isotope (δ13C) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C,δ13C and total nitrogen. Similarly to the vertical distribution of SOC in natural forests,SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC ?13C composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass 13C composition. Soil profiles with a change in photosynthetic pathway had a more complex 13C isotope composition distribution. During the 20 years after plantation establishment,the soil organic matter sources influenced both the δ13C distribution with depth,and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.  相似文献   

4.
The distribution of soil organic matter (SOM) and nitrogen on Gongga Mountain was studied in this paper. The results showed that the content of SOM and nitrogen (N) of A horizon had an ascending trend with the increase of the elevation. The vegetation types distributed higher than the mixed broad-leaved and coniferous forest have the irregular trends. In the transitional zone vegetation such as mixed trees and treeline, the content of SOM and N is higher than other vegetation types. The distribution of SOM and N of A horizon is dependent on the synthetic effect of climate and vegetation types. The vertical distribution of SOM and N in soil profiles has the similar trends for all kinds of vegetation types, i.e., the content of A horizon is higher than that of the B and C horizons, which is the same to the distribution of dead animal and plant in soil. The soil C:N is between 7 and 25, which is relatively low comparing to the appropriate C:N of 25-30. The ratio of soil carbon to nitrogen (C:N) increases with the increase of the elevation, but its vertical distribution in soil horizons varies with different vegetation types. The N exists in SOM mainly in the form of organic nitrogen, and the soil C:N correlates significantly with SOM.  相似文献   

5.
Transport of organic carbon via rivers to estuary is a significant geochemical process in the global carbon cycle.This paper presents bulk total organic carbon(TOC) from the Dongjiang catchment to the adjacent Humen outlet,and discusses the applicability of δ13C and ratio of carbon to nitrogen(C/N) as indicators for sources of organic matter in the surface sediments.Survey results showed that organic carbon concentration in summer were higher than in the winter.An elevated trend of TOC occurred along the river to the Humen outlet in both surveys,and the highest mean values of dissolved and particular organic carbon(DOC~279 μmol L–1 and POC~163 μmol L–1) were observed in the urban deltaic region in summer flood flow.Winter samples had a wide range of δ13C and C/N(δ13C –24.6‰ to –30.0‰,C/N 4–13),and summer ones varied slightly(δ13C –24.2‰ to –27.6‰,C/N 6–18).As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil,phytoplankton and agricultural C3 plants in winter,whereas main sources were from the riverbank and mangrove soil in summer.Moreover,anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet.Transport accompanied with seasonal freshwater variation,phytoplankton production and degradation,and removal behavior caused variation of organic carbon concentration.The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow,and anthropogenic activity significantly impacted the river export contribution.  相似文献   

6.
Soil is the largest carbon pool of terrestrial ecosystem, and its carbon content accounts for two thirds of the whole terrestrial ecosystem (Schlesinger, 1990). The soil organic matter (SOM) content and turnover rate exert impacts directly on the terrestrial ecosystem and global carbon cycles. Nitrogen is the main limiting factor constraining the plant growth (Vitousek etal., 1997; Pamela etal., 2002). Changes of the nitrogen content will change the microbial respiration through changing the…  相似文献   

7.
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.  相似文献   

8.
Transport of organic carbon via rivers to estuary is a significant geochemical proc- ess in the global carbon cycle. This paper presents bulk total organic carbon (TOC) from the Dongjiang catchment to the adjacent Humen outlet, and discusses the applicability of 613C and ratio of carbon to nitrogen (C/N) as indicators for sources of organic matter in the surface sediments. Survey results showed that organic carbon concentration in summer were higher than in the winter. An elevated trend of TOC occurred along the river to the Humen outlet in both surveys, and the highest mean values of dissolved and particular organic carbon (DOC-279 μmol L-1 and POC-163μmol L-1) were observed in the urban deltaic region in summer flood flow. Winter samples had a wide range of b'13C and C/N (5-3C -24.6%o to -30.0%o, C/N 4-13), and summer ones varied slightly (8-3C -24.2%o to -27.6%0, C/N 6-18). As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil, phytoplankton and agricultural C3 plants in winter, whereas main sources were from the riverbank and mangrove soil in summer. Moreover, anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet. Transport accompanied with seasonal freshwater variation, phytoplankton production and degradation, and removal be- havior caused variation of organic carbon concentration. The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow, and anthropogenic activity significantly impacted the river export contribution.  相似文献   

9.
长江口水域悬沙浓度时空变化与泥沙再悬浮   总被引:4,自引:0,他引:4  
A detailed analysis of suspended sediment concentration (SSC) variations over a year period is presented using the data from 8 stations in the Yangtze River estuary and its adjacent waters, together with a discussion of the hydrodynamic regimes of the estuary. Spatially, the SSC from Xuliujing downwards to Hangzhou Bay increases almost constantly, and the suspended sediment in the inner estuary shows higher concentration in summer than in winter, while in the outer estuary it shows higher concentration in winter than in summer, and the magnitude is greater in the outer estuary than in the inner estuary, greater in the Hangzhou Bay than in the Yangtze River estuary. The sediments discharged by the Yangtze River into the sea are resuspended by marine dynamics included tidal currents and wind waves. Temporally, the SSC shows a pronounced neap-spring tidal cycle and seasonal variations. Furthermore, through the analysis of dynamic mechanism, it is concluded that wave and tidal current are two predominant factors of sediment resuspension and control the distribution and changes of SSC, in which tidal currents control neap-spring tidal cycles, and wind waves control seasonal variations. The ratio between river discharge and marine dynamics controls soatial distribution of SSC.  相似文献   

10.
乌鲁木齐河流域不同水体中的氧稳定同位素   总被引:1,自引:0,他引:1  
The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ^18O against temperature are δ^18O=-0.94T-12.38 and δ^18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ^18O/temperature slopes show the strong sensitivity of δ^18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ^18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ^18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ^18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ^18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.  相似文献   

11.
长江口盐沼土壤有机质更新特征的滩面趋势   总被引:9,自引:0,他引:9  
通过对长江口崇明东滩高潮滩、中潮滩以及光滩柱状样的有机元素(C、N)含量与碳稳定同位素组成(δ13C)、粒度组成等的测定,研究盐沼土壤有机质更新特征及其滩面趋势.结果表明,长江口盐沼土壤POC-δ13C相关特征与山地土壤剖面上部土层的基本类似,盐沼土壤有机质主要源于长江流域表层土壤,有机质年龄不足100年.不同高程柱样TN-C/N、POC-TIC与POC-δ13C关系特征表明盐沼土壤有机质更新程度普遍较低,有机质更新特征呈明显的滩面变化趋势.光滩有机质基本反映沉积母质特征,更新程度极低;中、高潮滩有机质更新作用已经发生,随着滩面演变,处于不同更新阶段的有机质组分混杂程度提高.盐沼滩面过程塑造垂向沉积层序,层序中独特的沙、泥纹层构造导致物质上下运移困难,有机质更新作用受到抑制.盐沼滩面过程直接影响有机质的累积与更新,对于有机质更新的时空特征具有显著制约.  相似文献   

12.
近期长江北支口门圆陀角附近潮滩地貌动态变化   总被引:2,自引:0,他引:2  
圆陀角位于长江北支岸线与江苏海岸线的交会处,独特的互花米草潮滩、淤泥质光滩环境和复杂的河海沉积动力,决定了潮滩地貌对海洋环境变化的响应具有敏感性。由于大规模的围垦,圆陀角附近过去40年来海岸线向东推进了6km。根据2006年以来多次的野外调查和室内粒度与钻孔岩芯的137Cs分析, 2006年以来圆陀角附近潮滩淤积明显加强,由137Cs时标估算的互花米草滩多年平均沉积速率为2.3cm/a, 2006~2008年观测到的互花米草滩淤积速率>4cm/a,粉砂淤泥质光滩的淤积速率更高;圆陀角风景区内互花米草滩前缘陡坎在风暴潮影响下侵蚀后退,并因粉砂淤泥质光滩的快速淤长而消亡,圆陀角附近潮滩地貌动态是对人类围垦活动、风暴潮与潮汐海洋动力的综合响应,互花米草与光滩快速淤积是近期圆陀角附近潮滩地貌演化的主要特点。  相似文献   

13.
王进欣  张威  郭楠  李超  王今殊 《地理科学》2016,36(2):247-255
为了更好地理解在潮水和植被交互作用梯度上有机质、全氮和全磷分布的特殊性,分别于生长季和非生长季在苏北盐沼沿近潮沟带和远潮沟带2条样线布设9个固定采样区,采集土壤样品,测定土壤有机质、全氮和全磷的含量。结果表明:植被和潮水的交互作用是决定土壤有机质、全氮和全磷时空变化的关键因素。相对于潮水,植被的影响更为稳定和持久;盐沼土壤有机质和全氮含量具有显著的空间和月份变化,空间变化主要包括植被带(潮水)梯度上和样带间(潮流)的差异,在植被带(潮水)梯度上植被带高于光滩,而植被带间呈现由海向陆的递减趋势,即互花米草(Spartina alterniflora)>盐地碱蓬(Suaeda salsa)>獐茅(Aeluropus littoralis)>芦苇( Phragmites australis);有机质样带间差异表现为在低位盐沼远潮沟带大于近潮沟带,而中位盐沼却是近潮沟带大于远潮沟带,全磷含量时间和空间变化上均不具显著性;pH、土壤含水量和盐分含量等与潮水作用直接相关的因子与距海距离呈负相关关系,土壤有机质、全氮和全磷与距海距离也表现为负相关关系,而土壤有机质、全氮和全磷含量与pH、土壤含水量及盐分含量等因子为正相关关系,一定程度上诠释了潮水对土壤有机质、全氮和全磷含量变化的影响。  相似文献   

14.
以20世纪50年代中期以来崇明岛东部盐沼6个钻孔潮坪层段为研究对象,根据柱样粒度特征、碳/氮元素含量、有机碳稳定同位素组成(δ13C)和C/N比,结合长江入海泥沙通量的变化,研究20世纪50年代中期以来崇明岛东部盐沼发育与长江入海泥沙的响应关系。结果表明:长江入海泥沙通量及组成是20世纪50年代中期以来崇明岛东部盐沼物质粗细变化的主控因素;崇明岛东部盐沼沉积物δ13C与C/N比的相关程度、有机质含量与各粒径区间颗粒含量的相关性在不同时期均存在差异;20世纪60年代,长江入海泥沙量达到顶峰,流域不同侵蚀区域的泥沙相互混合,有机质含量与各粒径区间颗粒含量的相关性及δ13C与C/N比的相关程度均很差;20世纪90年代以来,崇明岛东部地区进行了高强度的围垦活动,δ13C与C/N比的相关程度下降。这表明20世纪50-80年代崇明岛东部盐沼发育受长江入海泥沙控制,20世纪90年代以来崇明岛东部盐沼发育除受长江入海泥沙控制外,还受围垦等人类活动的显著影响。  相似文献   

15.
为探讨高寒地区生态修复用地土壤颗粒有机碳(POC)分解特征,以祁连山南坡的修复草地和修复林地为研究对象,使用离心法将土壤分为砂粒(2 000—50 μm)、粉粒(2—50 μm)和黏粒(<2 μm),对土壤颗粒有机碳含量、土壤颗粒有机碳分配及颗粒有机碳稳定同位素组成特征进行了研究。结果表明:(1)两种修复用地均能提高颗粒有机碳的含量,新增的颗粒有机碳在修复草地中以砂粒有机碳为主体,在修复林地以粉粒和黏粒有机碳为主体。(2)3种土壤颗粒δ13C值均随粒径变小而增大,δ13C值与颗粒有机碳含量对数的回归斜率随着粒径变小而降低,修复林地叶片与表土有机碳的δ13C值分馏幅度高于修复草地,根系与表土有机碳的δ13C值分馏幅度小于修复草地。(3)修复草地砂粒、粉粒、黏粒有机碳平均周转时间分为9、20、34 a,修复林地分别为20、29、94 a,且两种修复用地的3种颗粒有机碳周转时间均有随修复年限增加而变长趋势。两种生态修复用地土壤颗粒有机碳的分解程度和周转速率均随着粒径减小而增大,从叶片转换为黏粒有机碳的过程中,修复林地周转速率较大,从根系转换成黏粒有机碳的过程中,修复草地更快。  相似文献   

16.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

17.
The investigations on the organic carbon (OC) of core sediments were carried out in Chongming east tidal flat (CM) during Scirpus mariqueter growing stage (from April to December 2004) in Yangtze Estuary. The Yangtze River annually transports a runoff discharge of 30,000 m3/s, carrying about 480 million tons of sediments to the estuarine and coastal area, which formed a great OC pool. In the sampling spots, seven quadrats of 50 cm × 50 cm and five sediments cores of 20 cm deep (40 cm deep in December) were randomly established in order to collect vegetations and core sediments samples during the low tide each month except November. After pretreatment, the core sediments were sieved and their OC contents were measured according to the potassium dichromate method. The results show that the higher surface sediment OC content in summer comes from allochthonous terrigenous particle settlements on the Chongming east middle tidal flat S. mariqueter zone. In autumn and winter, the decomposing of the defoliated S. mariqueter increases the surface sediments OC content. Settling velocity, sediment temperature and S. mariqueter growth are the main factors that can control the sediment carbon content. Summer is the "carbon losing" period of the tidal flat sediments, while from September, it changes into the "carbon accumulating" period of sediment OC pool because of the decomposing of dead S. mariqueter community in the sediments. From this alternation of "carbon losing" period and "carbon accumulating" period, we conclude that carbon in the OC pool of the middle tidal flat S. mariqueter zone sediments mainly comes from the atmospheric carbon rooted by S. mariqueter photosynthesis.  相似文献   

18.
放射性碳同位素在土壤碳循环中的应用   总被引:3,自引:0,他引:3  
文中介绍了放射性碳同位素方法在土壤碳循环中的应用,分析了在土壤有机质、土壤CO2气体研究中的主要方法和模型,并指出土壤有机质的放射性测定可以研究较长时间尺度的碳循环(十几年、几十年至更长时间尺度),而土壤CO2气体的放射性测定可以研究短期(季节变化和年变化)内碳的动态。放射性碳同位素用于土壤中细根周转时间的计算、土地利用变化等方面的研究成果及方法也在文中分别作了介绍和分析。最后提出了国内研究应加强的领域和未来利用放射性碳同位素方法研究土壤碳循环的重点研究方向和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号