首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dozens of references recognizing pediment landforms in widely varying lithologic, climatic, and tectonic settings suggest a ubiquity in pediment forming processes on mountain piedmonts worldwide. Previous modeling work illustrates the development of a unique range in arid/semiarid piedmont slope (< 0.2 or 11.3°) and regolith thickness (2–4 m) that defines pediments, despite varying the initial conditions and domain characteristics (initial regolith thickness, slope, distance from basin to crest, topographic perturbations, and boundary conditions) and process rates (fluvial sediment transport efficiency and weathering rates). This paper expands upon the sensitivity analysis through numerical simulation of pediment development in the presence of spatially varying rock type, various base level histories, various styles of sediment transport, and various rainfall rates to determine how pediment development might be restricted in certain environments. This work suggests that in landscapes characterized by soil and vegetation types that favor incisive fluvial sediment transport styles coupled with incisive base level conditions, pediment development will be disrupted by the roughening of sediment mantled surfaces, thereby creating spatial variability in topography, regolith thickness, and bedrock weathering rates. Base level incision rates that exceed the integrated sediment flux along a hillslope derived from upslope weathering and sediment transport on the order of 10− 3 m y− 1 restrict pediment development by fostering piedmont incision and/or wholesale removal (stripping) of regolith mantles prior to footslope pediment development. Simulations illustrate an insensitivity to alternating layers of sandstone and shale 3–15 m thick oriented in various geometric configurations (vertical, horizontal, and dip-slope) and generating different regolith hydrologic properties and exhibiting weathering rate variations up to 3-fold. Higher fluxes and residence times of subsurface groundwater in more humid environments, as well as dissolution-type weathering, lead to a thickening of regolith mantles on erosional piedmonts on the order of 101 m and an elimination of pediment morphology. An initial test of the model sensitivity analysis in arid/semiarid environments, for which field reconnaissance and detailed geomorphic mapping indicate the presence of pediments controlled by climatic conditions (soil hydrologic properties, vegetation characteristics, and bedrock weathering style) that are known and constant, supports our modeling results that pediments are more prevalent in hydrologically-open basins.  相似文献   

2.
The Sonoran Desert portion of the Basin and Range physiographic province contains a number of streams that now flow across once-closed basins. We explore here the research questions of if and how granitic rock pediments respond to the transition from rimming endorheic basins to bordering through-flowing streams. Granitic rock pediments of the northern Usery and eastern McDowell Mountains once graded to the closed Miocene–Pliocene Pemberton basin that occupied the present-day location of the confluence of the Salt and Verde Rivers. The process of lake overflow, which integrated these rivers, first aggraded fill terraces that, in turn, caused aggradation of a mantle of transported grus on bedrock pediments. Subsequent episodic incision of the Salt and Verde rivers lowered the base level; this led to the development of erosional features such as rolling topography of a degrading pediment mantle; exposure of the former piedmont angle and its associated zones of enhanced bedrock decay and regolith carbonate; and exposure of spheroidally weathered bedrock and emerging tors, some of which experienced 20th century erosion. The granitic pediments of the former Pemberton Basin, which now transport grus to the Salt and Verde rivers, have actively adjusted to aggradational and degradational events associated with drainage integration and do not appear to be inherited from an ancient wet climatic interval.  相似文献   

3.
On upland Triassic sandstone slopes of the western Blue Mountains, nonswamp, sclerophyllous heath (shrub-dominated vegetation) on shallow soils is commonly found downslope and adjacent to sclerophyllous forest on deeper soils. Some consider heath—and thus shallow soils—as favouring west-facing slopes, which are expected to experience drier microclimates due to insolation, strong and desiccating winds, and severe summer fires. However, our analysis of extensive areas with heath on shallow soils, based on vegetation and topographic maps, and fieldwork of uplands with various degrees of dissection, suggests that aspect is a poor predictor of shallow soils. Rather, shallow soils and heath are found on short slopes and the lower segments of longer slopes with the latter significantly steeper than forested segments.The shallow–deep soil boundary, marked by contrasting modern vegetation structures, does not signify a catchment area threshold, and correspondingly, the vegetation patterns are not in balance with distributary catchment processes, as short slopes are mantled exclusively by shallow soils. Instead, the soil depth boundary represents the propagation of base-level lowering signals, which takes place not only by the headward retreat of knickpoints but also via increased lowering of slope segments adjacent to drainage lines. This leads to steep slopes immediately adjacent to canyons, narrow gorges, and small steep valleys, that are mantled by shallow, discontinuous soils undergoing rapid erosion. These steep slopes persist in the landscape for ≥ 10 My after upland stream rejuvenation until incision of more weatherable Permian sediments, underlying the Triassic cliff-forming sandstones, triggers rapid lateral expansion of gorges. Once shallowly mantled and steeper slopes adjacent to streams are consumed by gorge widening, slopes adjacent to wide gorge clifflines reflect former upland drainage patterns rather than the redirected flow to rapidly widening gorges. Hence, modern vegetation patterns reflect a significant phase of landform development, perhaps combined with enhanced erosion during the Last Glacial Period that is compounded by a humped soil production function on bedrock.  相似文献   

4.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

5.
The Quaternary evolution and the morpho-sedimentary features of some of the most important rivers in Spain (Ebro and Tagus rivers among others) have been controlled by subsidence due to alluvial karstification of the evaporitic bedrock. The subsidence mechanism may range from catastrophic collapse to slow sagging of the alluvium by passive bending. In the Ebro Basin, the mechanisms and processes involved in karstic subsidence were studied through the analysis of present-day closed depressions as well as through old subsidence depressions (palaeocollapses and solution-induced basins) and associated deformations recorded in the Quaternary alluvial sediments. The Gállego–Ebro river system is presented as a case study of channel adjustments and geomorphic and sedimentary evolution of fluvial systems in dissolution-induced subsidence areas. In this fluvial system, evaporite dissolution during particular Quaternary time intervals (namely early and middle Pleistocene) have lead to the development of a solution-induced basin, approximately 30 km-long by 8 km-wide, filled by Quaternary deposits with a total thickness in excess of 190 m. The main river response to balance the subsidence in the alluvial plain was aggradation in the central reach of the subsiding area, and degradation both in the upstream reach and in the valley sides where alluvial fans and covered pediments may prograde over the fluvial sediments. The main sinking areas are recognized in the sedimentary record by anomalous thickenings in the alluvial deposits and fine-grained sediments deposited in backswamp and ponded areas.  相似文献   

6.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

7.
Modelling differential catchment response to environmental change   总被引:2,自引:4,他引:2  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to demonstrate significant differences in coarse sediment transfer and alluviation in medium sized catchments when responding to identical Holocene environmental changes. Simulations for four U.K. basins (the Rivers Swale, Ure, Nidd and Wharfe) shows that catchment response, driven by climate and conditioned by land cover changes, is synchronous but varies in magnitude. There are bursts of sediment transfer activity, generally of rapid removal but with some sediment accumulation ‘spikes’, with longer periods of slow removal or accumulation of sediment in different valley reaches. Within catchments, reach sensitivity to environmental change varies considerably: some periods are only recorded in some reaches, whilst higher potential sensitivity typically occurs in the piedmont areas of the catchments modelled here. These differential responses appear to be highly non-linear and may relate to the passage of sediment waves, by variable local sediment storage and availability, and by large- and small-scale thresholds for sediment transfer within each catchment. Differential response has major implications for modelling fluvial systems and the interpretation of field data. Model results are compared with the record of dated alluvial deposits in the modelled catchments.  相似文献   

8.
A typhoon in 1993 induced major aggradation along Oyabu Creek, a steep, gravel bed mountain stream in Kyushu, Japan. Processes of sediment reworking are inferred from a 7-year monitoring program that measured adjustments to channel cross-sections, the longitudinal profile, and the extent/distribution of bedrock outcrops along a 3-km study reach. Over time, the reach adopted a riffle and pool structure, with notable increase in the area of exposed bedrock on the bed. This adjustment process was characterised by progressive reduction in sediment storage change per unit flow. The relaxation pathway following disturbance induced by the typhoon was shaped by the magnitude and frequency of subsequent rainfall events, the capacity of these events to transport available sediments, and physical linkages between reaches. Adjacent subreaches demonstrated differing relaxation pathways in response to these influences, induced by spatial and temporal variability in threshold conditions along the channel. Longer-term evidence indicates that responses to major disturbance, such as the 1993 typhoon, occur as ‘cycles’ of around 20-year duration. A relaxation period of 7 years is required to attain a quasi-equilibrium bed configuration and rate of sediment flux. The timeframe of cycles is considered to reflect changes to hillslope–channel bed coupling, marking the period required to generate sufficient sediment stores to reactivate phases of aggradation and subsequent degradation.  相似文献   

9.
云南东川地区层状地貌面的成因   总被引:1,自引:1,他引:1  
在东川地区的山地及小江河谷的两侧山麓上部,分布着不同高度和不同规模的层状地貌面,对其成因仍有不同的认识。分歧主要表现在两个方面:一是高原隆升之前的初始地貌面是否是准平原型夷平面;二是山顶面之下的梯级层状地貌面的成因。本文从以下几个方面对上述问题进行讨论:(1)层状地貌面的地貌特征及其与侵蚀河谷体系的关系;(2)层状地貌面上堆积物的性质;(3)层状地貌面与断裂构造水平展布的关系;(4)相邻层状地貌面的空间过渡关系;(5)区域构造演化背景。作者认为在云贵高原抬升过程中,东川地区以挤压穹起隆升变形为主。不同海拔高度的层状地貌面具有多成因特性。山顶面及局部高原面是高原隆升之前古夷平面的残留。并遭到后期强烈的侵蚀改造。目前,尚缺乏足够证据证明高原隆升之前的古夷平面为准平原型夷平面。小江河谷两侧的梯级层状地貌面是侵蚀或剥蚀面,它们形成于高原隆升及初始地貌面解体之后,其梯级空间分布特征与区域性的阶段隆升有关。  相似文献   

10.
Seven mesas (i.e. flat-topped, isolated mountains) and the Grootberg mountain in arid north-west Namibia were investigated with regard to floristic relationships in relation to environmental gradients. Relationships between mesas and their surrounding, species richness and number of mesa specialists were used as measures to explore the influence of elevation on these floristic parameters. Also soil properties were investigated along these elevation gradients. The overall questions were designed to investigate the importance, i.e. ‘special status’, of these mesas in terms of contributing to species diversity and to elucidating ecological processes in this arid landscape.With regard to special floristic status, the tops of mesas supported different plant communities than their surrounding plains, while slopes indicated various levels of intermingling with plain vegetation. Differences between mesas and plains became more pronounced with increasing elevation. There were, however, no clear vegetation belts related to elevation. Plant species richness and number of mesa specialists showed a trend of increasing numbers with elevation, but these trends were statistically poorly supported, largely due to high variability between samples.Do soil gradients and elevation, as two important environmental variables, affect this ‘special’ status? Pronounced soil gradients were evident for many soil properties. These in combination with altitudinal effects of increased moisture and lower temperatures were believed to directly influence plant species composition and richness. The soil gradients may also indicate nutrient flow from the mesas to the surrounding lowlands, a process of ecological importance, particularly should degradation due to over grazing become a problem in the lowland areas.  相似文献   

11.
12.
Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.  相似文献   

13.
A number of prehistoric landslides and rock avalanches occurred in the folded and faulted section of the Molasse Zone in Vorarlberg, Austria. Some developed into a Sturzstrom, defined as a ‘rapidly moving fluidised mass movement of large volumes of rock, derived from the disintegration of a falling rock mass, that spread under the influence of gravity’. Their impact on the landscape usually is related to obstruction of rivers and valleys.In this paper, we analyse the geomorphology and the failure mechanism of a relative small ‘Sturzstrom’. The failure mechanism can be described as a ‘buckling failure’. The morphological situation indicates that failure took place after local deglaciation by the end of the Upper Würm. The period of failure coincides with glacial and ice-marginal remnants, which developed between 15.000 and 14.600 BP. The lithological sequence and rock structure, as well as the impact of the processes related to the former glacial environment, were major causal conditions. The rock sequence consists of conglomerates, sandstone layers, and marls. Next to glacial scouring, which increased the inclination of the valley slopes, the effect of late-glacial unloading and postglacial processes, such as weathering and fluvial erosion, subsequently weakened the mass rock fabric until failure occurred.Discontinuity orientation measurements, geostructural and geomechanical conditions, and the former hydrological and geomorphological conditions support bucklings failure. In fact, three-hinge buckling may have occurred. The frontal section of the Sturzstrom consists mainly of large conglomerate blocks, averaging 1.5 m3 in volume, although megablocks, reaching of up to 4000 m3, are present as well. The volume of the entire Sturzstrom equals approximately 10×107 m3. Present activity is only restricted to minor rock falls derived from the conglomerates and mudflows originating from the marl layers.  相似文献   

14.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   

15.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

16.
A large number of blowouts and playas occur in the marginal sectors of the aeolian deposits located in the southern sector of the Duero Depression (Tierra de Pinares) in Spain. The blowouts are relict landforms that were developed on sand sheets by deflation during dry periods with lower vegetation cover and a deeper water table. The studied blowouts form complexes of NW–SE and NNW–SSE elongated hollows with accompanying dunes up to 4 km long in the leeward margins. Some hollows host lakes or swampy areas related to a shallow water table. The dunes formed by NE–ENE winds show steep windward slopes and gentle leeward slopes. The studied playas, with prevalent NNW–SSE orientations, result from the aeolian excavation of terrace deposits and the underlying marly bedrock. It is probable that the formation of these depressions in an initial stage was related to deflation processes affected preferentially NNW–SSE sandy channels perpendicular to the dominant wind direction. The precipitation of salts in the playas generates aggregates of clay particles (peloids) that are easily removed by the wind. Once the bottom reached the substratum, the deepening of the depressions progressed by the deflation of particles produced by weathering of the argillaceous bedrock.  相似文献   

17.
Translational failures, with associated downslope earthflow components and shallow slides, appear to be the primary mechanism of hillslope denudation in the humid tropical forests of the mountains of eastern Puerto Rico. In-situ weathering of quartz diorite and marine-deposited volcaniclastics produces residual soil (saprolite; up to 21 m deep) / weathered rock profiles. Discontinuous zones of contrasting density and permeability particularly in quartz-diorite slopes at 0.5 m, and between 3 and 7 m, create both pathways and impedances for water that can result in excess pore pressures and, ultimately, aid in determining the location of failure planes and magnitudes of slope failures. In combination with relict fractures which create planes of weakness within the saprolite, and the potential significance of tensile stresses in the upper zone of saprolite (hypothesized to be caused by subsurface soil creep), shear failure can then occur during or after periods of heavy rainfall.Results of in-situ shear-strength testing show negative y-intercepts on the derived Mohr-Coulomb failure envelopes (approximately 50% of all tests) that are interpreted as apparent tensile stresses. Observation of tension cracks 1–2 m deep support the test data. Subsurface soil creep can cause extension of the soil and the development of tensile stresses along upper-slope segments. Shear-strength data support this hypothesis for both geologic types. Apparent values of maximum and mean tensile stress are greatest along upper slopes (16.5 and 6.29 kPa). Previously documented maximum rates of downslope movement coincided with local minima of shear strength, and the shear-strength minimum for all tests was located near 0.5 m below land surface, the shallow zone of contrasting permeabilities. These results indicate that subsurface soil creep, a slow semi-continuous process, may exert a profound influence on rapid, shallow slope failures in saprolitic soils.Data indicate that cove slopes in quartz diorite tend to be the most unstable when saturation levels reach 75%. Deep failures (7 m deep) appear the most critical but not the most frequent because pore pressure build-up will occur more rapidly in the upper perched zone of translocated clays before reaching the lower zone between 3 and 7 m. Frequent shallow failures could reduce the probability of deeper failures by removing overburden and reducing shear stress at depth. Deep failures are more likely to result from storm events of great duration and intensity.Sixty-six ‘naturally occurring’ and more than 100 ‘road-related’ landslides were mapped. Forest elevations exceed 1000 m, but the majority of these failures were found between 600 and 800 m in elevation. This appears to be the area where there is sufficient concentration of subsurface water to result in excess pore pressures. The high percentage of slope failures in the 600–800-m range, relative to the percentage at higher elevations, suggests that differences in soil-water processes are responsible for the form of these mountain slopes. Steep linear segments are maintained at higher elevations. Slope angles are reduced in the 600–800-m range by frequent shallow slides, creating a largely concave surface. In combination, slope segments above 800 m, and those between 600 and 800 m, produce the characteristic form of the mountains of eastern Puerto Rico.  相似文献   

18.
Micropiping processes and biancana evolution in southeast Tuscany, Italy   总被引:1,自引:0,他引:1  
Biancane badlands consisting of small domes dissected by rills and micropipes, with rough disordered microrehef, can be found along the Apennines in Italy. The dominant processes forming biancane differ from those of badlands formed on smectite-rich mudrocks, as micropipes associated with pseudokarstic enlargement of pores and cracks predominate and form the main routes for evacuation of eroded material.Biancana evolution is controlled by water infiltration into intact bedrock, producing an erodible weathering ‘rind’ which is more porous than intact rock. This rind is easily removed by rill or micropipe flow, and erosion is therefore ‘weathering-controlled’, depending on rind production by infiltrating water. Infiltration is initially slow and stepped, due to slow water movement through very small capillary pores in intact rock alternating with rapid filling of macropores and cracks. This occurs due to rapid matrix pore enlargement by dispersion and/or dissolution. The infiltration pattern is accurately reproduced by a model built on progressive development of weathering layers by moisture penetration. Model results are consistent with weathering rind depths and erosion observed in the field, and show that a pipe network can be generated on newly exposed rock by the rainfall of one year.Propagation of the pipe network diverts a progressively larger proportion of runoff into micropipes, expanding weathering rind production within the biancana as well as on the surface. Internal weathering and flow progressively dominate with few unweathered corestones, and the biancana gradually collapses into a penultimate “soufflé-like” form.  相似文献   

19.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

20.
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process ‘rules’ governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号