首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
黄土高原土壤侵蚀(水蚀)多尺度过程与水土保持研究进展   总被引:5,自引:1,他引:4  
韩晓燕  钱鞠  王磊  刘芬  毛泽秦 《冰川冻土》2012,34(6):1487-1498
从产生土壤侵蚀机理出发, 分别阐述了黄土高原地区的坡面、 沟谷、 小流域、 流域尺度上的土壤侵蚀(水蚀)研究现状与取得的进展.结合平凉城南侧泾河一级支沟的纸坊沟小流域治理实践和调查, 总结黄土高原地区水土流失治理和水保措施实施的经验及其存在的不足. 建议未来的研究向着"规划性"、 "综合性"、 "量化尺度性"、 "弱化尺度性"模型的研究方向发展, 这对提高地区水土保持质量、 改善水土流失治理现状、 实现水保效益最大化目标具有重要意义.  相似文献   

2.
The Loess Plateau is well known to the world because of its thick loess and severe soil erosion. Loess is a highly erosion-prone soil that is considerably susceptible to water erosion. The Loess Plateau also has a long cultivation history, hence population growth, vegetation degeneration serious soil and water loss were obviously problems on Loess Plateau. This article analyzes several strategies of soil and water conservation on the Loess Plateau, such as terracing, planting trees, natural vegetation rehabilitation and construction of warp land dams. Different periods had different strategies of soil and water conservation and each strategy had its characteristics and effects. Finally, the research directions and future perspectives of the Loess Plateau were discussed, including the strategies of sustainable eco-environment of Loess Plateau in China.  相似文献   

3.
Soil erosion is one of the serious and urgent issues in the Loss Plateau of China. Chinese government has implemented Grain for Green Project to restore the ecological environment since 1999. In order to explore the spatiotemporal evolution of erosion and sediment yield before and after Grain for Green Project in the Loss Plateau, annual soil loss of Yulin from 2000 to 2013 is estimated by Chinese Water Erosion on Hillslope Prediction Model in conjunction with Remote Sensing and Geographic Information Systems. This model has the characteristics of a simple algorithm and can be applied to predict erosion in the Loss Plateau. The result shows that vegetation cover increased significantly after Grain for Green Project, and the annual average value of NDVI increased from 0.20 to 0.33. The spatiotemporal variations of soil erosion are largely related to rainfall erosion distribution, slope, and land use type. The overall soil erosion categories in the south region are higher than those of the northwest. Mid slopes and valleys are the major topographic contributors to soil erosion. With the growth of slope gradient, soil erosion significantly increased. The soil loss has a decreasing tendency after Grain for Green Project. Although the rainfall of 2002 and 2013 is similar, the soil loss decreased from 5192.86 to 3598.94 t/(km2 a), decreasing by 30.33%. It is also expressed that soil loss appears a reducing trend in the same degree of slope and elevation in 2002, 2007, and 2013. Under the simulation of the maximum and the minimum rainfall, soil erosion amount in 2013 decreased by 29.16 and 30.88%. The study proved that GFG has already achieved conservation of water and soil. The results indicate that the vegetation restoration as part of the Grain for Green Project on the Loss Plateau is effective.  相似文献   

4.
Frequent occurrence of landslides in the Chinese Loess Plateau has been influenced by the changes of water conditions. This paper, based on in-situ water scouring experiments under various slope gradients, cross-sectional discharge shapes and flow quantities, analyzed the rill flow information characteristics on a loess slope and its driving factors for anti-scourability of the loess stratum. The results show that the critical erosion slope gradient for the loess stratum (Q3) is about 24° and the mean erosion rate under half-round cross-sectional discharge is smaller than that under rectangular discharge. The relationship between flow quantity and mean erosion rate is linear and is positively correlated. Mechanical subsurface erosion was the primary condition responsible for water scouring on loess slopes because of stronger runoff channels such as vertical joints and large amounts of macro void caused by plants and animals. Loess anti-scourability is a significant issue to advance the research for soil and water conservation in the Loess Plateau of China.  相似文献   

5.
Soil crust and slope angle are of important factors affecting runoff production and sediment yield. In the hilly areas of the Loess Plateau, North China, slope lands are distributed extensively and subjected to soil crusting; therefore, the research on the responses of runoff and soil loss to soil crust and slope angle is essential to soil and water conservation. In the study, five pairs of 1 m × 5 m plots with slope angles of 5°, 10°, 15°, 20° and 25° respectively, were established in Wangjiagou watershed, which was located at the Loess Plateau, China. Based on the two simulated rainfall events, uncrusted surface prior to the first simulated rainfall event, and crusted surface prior to the second rainfall event were distinguished. The runoff production and soil loss were measured at intervals of 5 min during the simulated events. It indicated that both soil crust and slope angle played an important role in runoff production and soil loss. With the reference slope angle of 5°, the relative importance of soil crust and slope angle in runoff production was calculated. It showed that soil crust effect on the total runoff volume decreased from 100 to ~40%, while slope angle effect increased from 0 to ~60% with increasing slope angle because soil crust less developed on the steeper slopes. Furthermore, soil crust effect was associated with rainfall duration. At the same slope angle, the relative importance of soil crust decreased with rainfall duration because new crust was formed on the uncrusted surface. The critical slope of erosion was also discussed. Soil loss increased with slope angle when the slope angle was less than 20°. Generally speaking, soil crust effect decreased with slope angle and/or rainfall duration.  相似文献   

6.
考虑重力侵蚀影响的分布式土壤侵蚀模型   总被引:5,自引:0,他引:5       下载免费PDF全文
黄土高原地区的土壤侵蚀具有水力侵蚀和重力侵蚀相伴发生的特点,在大多数针对黄土高原的侵蚀模型研究中未考虑重力侵蚀的影响,使得模型的模拟精度较差。针对黄土高原的侵蚀特点,采用量化影响重力侵蚀发生的主要因素,确定重力侵蚀发生的具体沟道栅格单元的方法,从而考虑了重力侵蚀对产输沙过程的影响。所建立的分布式土壤侵蚀模型以逐网格汇流的水文模型为基础,采用逐网格侵蚀输沙的模拟方式,能够模拟上方来水来沙对侵蚀输沙的影响。经小理河流域实测资料验证,模型具有一定的计算精度。  相似文献   

7.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

8.
根据陇东黄土高塬沟壑区典型小流域——南小河沟流域1954—2014年实测降雨产沙资料,应用降雨侵蚀力偏差系数法研究不同土地利用类型及空间尺度下侵蚀产沙的雨量阈值、雨强阈值及复合阈值标准,并通过对比分析确定了最优降雨阈值标准。结果表明:① 对于林地和草地坡面小区,其雨量阈值标准平均值(21.0 mm)较裸地(8.7 mm)和农地(9.7 mm)坡面小区分别提高了141%和116%,植被措施能够显著提高降雨阈值标准。② 杨家沟林地小流域的雨量阈值标准为16.5 mm,低于布设在该流域的林地坡面小区,同时对比董庄沟草地小流域及其坡面和全坡面小区的雨量阈值标准,其大小亦为:草地坡面尺度 > 草地全坡面尺度 > 草地小流域尺度,由此可见,降雨阈值标准会随着空间尺度增大而减小。③ 降雨阈值标准综合评价结果表明,各样点最优降雨阈值标准均为P≥a或I30≥b这一复合因子标准,而在降雨单因子阈值标准中,对于农耕地和裸地坡面小区,宜采用最大30 min雨强(I30)标准;对于经过水土流失治理的下垫面,宜采用雨量(P)标准。该研究可为区域土壤侵蚀预报提供参考。  相似文献   

9.
土壤侵蚀与第四纪生态环境演变   总被引:21,自引:4,他引:21       下载免费PDF全文
本文以考察研究土壤侵蚀区域规律和黄土-古土壤剖面特征为基础,分析讨论了土壤侵蚀与第四纪生态环境的关系。文中对自然侵蚀相对强烈期的判断,沉积-成壤反映的地质事件突变性和渐变性问题,自然侵蚀的时、空分异及其在现代侵蚀过程中的地位和作用均提出了与某些报道不同的见解和新的认识。  相似文献   

10.
In soil and water conservation research, vegetation is considered to be a primary factor affecting soil erosion. Many studies focus on the relationship between soil erosion and a given attribute of vegetation. Few studies have attempted a comprehensive analysis of vegetation attributes. Thus, the aim of this study is to explain the relationship between vegetation and soil erosion in detail. We studied 104 vegetation plots and 104 soil samples in the Yangjuangou catchment, Loess Plateau, Shaanxi Province, China. According to a correlation analysis of the vegetation attributes and soil 137Cs inventories, vegetation cover exerts a positive effect on soil erosion. In addition, vegetation aggregation increases with increasing soil loss. During this period of study, plant diversity can have different relationships with soil erosion according to the vegetation pattern. When vegetation distribution is relatively homogeneous, plant cover decreases with increasing diversity, and the soil loss increases. When vegetation pattern distributes between homogeneous and heterogeneous, the relationship between vegetation diversity and soil erosion is not obvious. When vegetation distribution is in a heterogeneous pattern, cover increases with increasing diversity, and soil loss decreases.  相似文献   

11.
植被作用下土壤抗剪强度和径流侵蚀力的耦合效应   总被引:3,自引:0,他引:3       下载免费PDF全文
利用野外径流小区动态监测和人工模拟降雨试验,阐明了草被和灌木的减流减沙效应,从力学层面揭示了坡面侵蚀产沙的过程机理。结果表明,与裸地相比,野外坡面草地和灌木地径流量分别减少28.1%~56.5%和85.7%~100%、产沙量分别减少84.9%~90.7%和98.5%~100%;在人工模拟降雨强度下,草地和灌木地径流量分别减少51.9%~90.9%和61.7%~80.6%、产沙量分别减少93.6%~99.2%和95.5%~99.2%;植被具有明显的增强土壤抗剪强度的作用,不同植被坡面抗剪强度与剪切面上的法向压力成正比,且符合库仑定律;不同下垫面条件下土壤黏聚力与坡面径流量和侵蚀产沙量呈显著的负相关关系,随着黏聚力的增大,径流量和侵蚀产沙量呈下降趋势;草地和灌木地坡面侵蚀临界径流切应力分别为裸地的2.64~3.16倍和2.44~3.18倍,建立了不同被覆坡面临界径流切应力与土壤抗剪强度和黏聚力的关系。研究结果对定量评价植被减蚀作用和深化土壤侵蚀力学过程有一定的参考意义。  相似文献   

12.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

13.
黄河沙量记录与黄土高原侵蚀   总被引:1,自引:0,他引:1  
龙门黄河沙量记录研究揭示,黄土高原黄土的侵蚀现象是我国脆弱的黄土环境中出现的一种天然环境地质过程。在年际时间尺度上,其侵蚀强度表现出明显的脉动特征,且与太阳黑子活动周期有密切关系。迄今黄土高原上的人为经济活动并未明显加速这一侵蚀过程或改变它的脉动特征,因而人为活动不是支配黄土高原黄土侵蚀的主导因素。  相似文献   

14.
土壤水作为陆地水循环和水量平衡的一个重要组成部分,在土壤-植被-大气连续体物质与能量转化中起着重要的作用,成为陆面过程研究中的重要参量.选择黄土高原西部的安家坡流域,采用多点长序列观测方法,对该区域土壤水分的时空变化规律进行研究.结果表明:坡向和土地利用类型是小流域土壤水分变异的重要影响因素,得出了不同立地条件下土壤水分的剖面变化与时间的动态规律.在此基础上,利用土壤湿度指数结合主要影响因素预测土壤水分的时空变化,旨在为黄土高原大中尺度的土壤水分模拟提供思路.  相似文献   

15.
The combination of ecological fragility and agricultural activity in the loess hilly–gully regions of western China has received broad environmental concerns. In this region, rainfall and soil moisture can fatally influence crop production under dry land farming. In this study, field experiments were conducted, from March 2001 to September 2005, to demonstrate the variation of soil moisture and fertilizer contents at different depths in slope and terraced lands, and to evaluate the ecological impacts and economic benefits in the terraced land of Loess Plateau. The results of both field test and Grey model (GM) calculation show that the terraced land, as compared to the sloping land, in the agricultural area of the Loess Plateau tends to store and retain much water, promoting more favorable interactions between water and fertilizer. During the months from March to June of the year with less rainfall, the water supply for crop growth is mainly derived from the deep storage of soil moisture accumulated from July to September of the previous year. The field experiments indicate that the crop yield of the 3-year-old terraced lands was 27% higher than that of the sloping lands with slopes greater than 10°, and that the crop yield can increase by 27.07 to 52.78% in the following cultivation years. In particular, potato was found to be more drought-resistant than winter wheat, thus it is more suitable for the arid and semi-arid Loess Plateau regions.  相似文献   

16.
The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire and urbanization. Soil erosion often leads to soil truncation, loss of fertility, slope instability, etc.which causes irreversible effects on the poorly renewable soil resource. In view of this, a study was conducted in Kelantan River basin to predict soil loss as influenced by long-term land use/land-cover(LULC) changes in the area. The study was conducted with the aim of predicting and assessing soil erosion as it is influenced by long-term LULC changes. The 13,100 km~2 watershed was delineated into four sub-catchments Galas, Pergau, Lebir and Nenggiri for precise result estimation and ease of execution. GIS-based Universal Soil Loss Equation(USLE) model was used to predict soil loss in this study. The model inputs used for the temporal and spatial calculation of soil erosion include rainfall erosivity factor,topographic factor, land cover and management factor as well as erodibility factor. The results showed that 67.54% of soil loss is located under low erosion potential(reversible soil loss) or 0-1 t ha~(-1) yr~(-1) soil loss in Galas, 59.17% in Pergau, 53.32% in Lebir and 56.76% in Nenggiri all under the 2013 LULC condition.Results from the correlation of soil erosion rates with LULC changes indicated that cleared land in all the four catchments and under all LULC conditions(1984-2013) appears to be the dominant with the highest erosion losses. Similarly, grassland and forest were also observed to regulate erosion rates in the area. This is because the vegetation cover provided by these LULC types protects the soil from direct impact of rain drops which invariably reduce soil loss to the barest minimum. Overall, it was concluded that the results have shown the significance of LULC in the control of erosion. Maps generated from the study may be useful to planners and land use managers to take appropriate decisions for soil conservation.  相似文献   

17.
Assessment of soil erosion risk using SWAT model   总被引:3,自引:2,他引:1  
Soil erosion is one of the most serious land degradation problems and the primary environmental issue in Mediterranean regions. Estimation of soil erosion loss in these regions is often difficult due to the complex interplay of many factors such as climate, land uses, topography, and human activities. The purpose of this study is to apply the Soil and Water Assessment Tool (SWAT) model to predict surface runoff generation patterns and soil erosion hazard and to prioritize most degraded sub-catchment in order to adopt the appropriate management intervention. The study area is the Sarrath river catchment (1,491 km2), north of Tunisia. Based on the estimated soil loss rates, the catchment was divided into four priority categories for conservation intervention. Results showed that a larger part of the watershed (90 %) fell under low and moderate soil erosion risk and only 10 % of the watershed was vulnerable to soil erosion with an estimated sediment loss exceeding 10 t?ha?1?year?1. Results indicated that spatial differences in erosion rates within the Sarrath catchment are mainly caused by differences in land cover type and gradient slope. Application of the SWAT model demonstrated that the model provides a useful tool to predict surface runoff and soil erosion hazard and can successfully be used for prioritization of vulnerable areas over semi-arid catchments.  相似文献   

18.
黄土高原关键带全剖面土壤水分空间变异性   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤水分是黄土高原关键带水循环、地下水补给和植被恢复的关键因素。为揭示黄土高原关键带黄土整个剖面的土壤水分空间变化特征,通过土芯钻探的方式获取了黄土高原关键带5个典型样点(杨凌、长武、富县、安塞和神木)从地表到基岩的土壤水分样品,采用经典统计学和地统计学相结合的方法分析了剖面土壤水分的分布规律、变异特征及空间结构。结果表明:黄土高原关键带剖面土壤水分从南往北,土壤平均含水量由高变低;5个样点的土壤水分均为中等变异,随着深度由40 m增加到200 m,土壤水分变异性变弱,且样点之间的土壤含水量差异降低;地统计学分析表明样点的半方差函数能被理论模型较好地拟合(杨凌除外),指数模型能够描述大部分样点深剖面的空间变异结构。相关结果有助于了解黄土高原深层土壤水分状况及分布规律,对于黄土高原土壤水资源估算和区域植被恢复具有重要价值。  相似文献   

19.
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin (WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index (NDVI) data from Global Inventory Modeling and Mapping Studies (GIMMS) or Advanced Very High Resolution Radiometer (AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.  相似文献   

20.
Ma  J. Y.  Li  Z. B.  Ma  B. 《Natural Hazards》2020,104(1):51-72

Gully slope is one of the most active areas of soil erosion in small watershed of the Chinese Loess hilly–gully region. Although its soil erosion has been effectively controlled with the implementation of the “Grain-for-Green Program” in this region, the soil water storage and distribution have been also impacted. In particular, unreasonable revegetation model has aggravated the water shortage, which may in turn threaten the health of ecosystems. However, yet little is known about the effect mechanism of vegetation on soil water in the gully slope. In this study, we examined the relationship between two revegetation modes, including afforestation (i.e. black locust forest) and natural revegetation (i.e. the grassland), and soil water in a depth of 0–120 cm of the gully slope, during the rainy season. The results showed that the effect of the vegetation to the soil water was smaller than that of the precipitation. Furthermore, the response of soil water to the environmental factors was higher in afforestation vegetation due to its lower soil water content, resulting in higher space dependence for soil water, compared to the natural revegetation. The lower soil water content of the black locust forest was mainly caused by its higher recession rate, not its supply. The soil water was deficient for a long time, caused by afforestation, with a shallower formation depth of the dried soil layer and stronger desiccation degree. However, this deficient could not be effectively relieved until in wet year. In comparison with the ridge slope, the effect of vegetation to soil water in gully slope was stronger, with greater water consumption in afforestation vegetation and the higher water storage in natural revegetation. From the aspect of water resources conservation on the water scale, the natural revegetation was the optimal revegetation mode in the gully slope of the loess hilly region.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号