首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
本文通过一座三层的耗能-隔震柔性底层钢管混凝土结构模型和一座三层普通钢筋混凝土结构模型的振动台实验,着重研究了耗能-隔震柔性底层钢管混凝土结构的抗震性能和减震效果,并与普通的钢筋混凝土结构的实验进行了分析比较,研究了两种结构体系在地震作用下的耗能分布和地震累积损伤情况。  相似文献   

2.
本文通过一座三层的耗能-隔震柔性底层钢管混凝土结构模型和一座三层普通钢筋混凝上结构模型的振动台实验,着重研究了耗能-隔震柔性底层钢管混凝上结构的抗震性能和减震效果,并与普通的钢筋混凝土结构的实验进行了分析比较,研究了两种结构体系在地震作用下的耗能分布和地震累积损伤情况。实验结果表明,耗能-隔震柔性底层能够有效地吸收地震输入的大部分能量,防止和减小了上部结构的地震破坏.文中还讨论了耗能-隔震柔性底层结构中钢管混凝土柱与橡胶隔震器之间的轴力分配以及在水平变形下的稳定性问题.  相似文献   

3.
本文用钢管混凝土柱作为结构底层耗能柱、用承重重墙和隔器控制结构层倒塌破坏,从而提出了一种新的耗能-隔震柔性底层结构体系。  相似文献   

4.
摩擦-钢管混凝土短柱复合隔震支座性能试验与隔震分析   总被引:3,自引:0,他引:3  
作者在钢管混凝土柱支座隔震房屋实验研究中发现,隔震支座中上盖与底座的接触无论如何处理,摩擦力总是存在的.因此,隔震支座实际上是摩擦耗能与钢管混凝土耗能复合减震系统。本文通过对单个和一组隔震支座的实验研究,确定了短柱支座的恢复力模型,采用了高阶单步算法分析了装有此类支座隔震结构的地震反应,验证了复合隔震支座良好的隔震性能及隔震效果。  相似文献   

5.
作者在钢管混凝土柱支座隔震房屋实验研究中发现,隔震支座中上盖与底座的接触无论如何处理,摩擦力总是存在的。因此,隔震支座实际是摩擦耗能与钢管混凝土耗能复合减震系统。本文通过对单个和一组隔震支座的实验研究,确定了短柱支座的恢复力模型,采用了高阶单步算法分析了装有此类支座隔震结构的地震反应,验证了复合隔震支座的良好的隔震性能及隔震效果。  相似文献   

6.
本文通过地震模拟振动台试验研究用耗能减震装置修复后震后有损伤钢筋混凝土框架的效果和可行性,文中制作了两层和三层两座钢筋混凝土剪切型框架,首先进行了地震损伤模拟试验,其次提出了震后有损伤结构的参数识别方法,修复准则和修复用耗能减震装置的设计准则;在此基础上,采用了软钢屈服型耗能器驿两座试验框架在地震损伤后进行修复,并再次对修复后的框架模型进行地震模拟试验,证实了采用这种修复措施可以恢复震后有损伤结构  相似文献   

7.
近年来,能量分析方法在结构抗震设计中的应用问题受到国内外地震工程界的普遍关注,被认为是今后结构抗震设计理论的发展方向之一.以一钢框架-钢筋混凝土剪力墙混合结构为对象,通过逐渐增大框架底层柱截面,分析它们在不同类型地震波下的地震能量反应,结果表明,加强钢框架底层柱使结构总输入能基本不发生变化,结构滞回耗能在总输入能中的比例ν和底部剪力墙滞回耗能占结构总滞回耗能的比例μ均随结构刚度特征值λ的增大而减小,因此,加强钢框架底层柱能够提高外钢框架-内混凝土剪力墙结构体系的抗震能力,降低其在强震作用下的损伤程度.  相似文献   

8.
某超高层钢管混凝土框架-混凝土核心筒结构因指标超限在设计中采用了耗能减震技术,为了检验该减震结构的抗震性能,制作了1/35的缩尺模型,通过在钢管混凝土框架设置阻尼器或不设置阻尼器,进行模拟地震振动台对比试验,研究了模型结构的动力特性和不同烈度地震作用下的加速度、位移和应变响应。研究结果表明:地震作用下,该钢管混凝土框架-混凝土核心筒减震结构与钢管混凝土框架-混凝土核心筒结构相比,位移、加速度和应变响应均有一定程度的降低;罕遇地震作用下,通过设置耗能减震构件,层间位移角最大值从超过规范要求的1/84减低至满足规范要求的1/130,表明该减震结构具有更优良的抗震性能。  相似文献   

9.
组合梁-方钢管混凝土柱框架结构抗震性能的pushover分析   总被引:3,自引:0,他引:3  
采用考虑组合梁多材料截面引起的正向、负向刚度、强度和承载力不同的截面本构模型,建立了组合梁结构的弹塑性分析模型,对一个15层的钢混凝土组合梁-方钢管混凝土柱框架结构开展了多遇地震、罕遇地震下的pushover分析,为组合框架结构体系的抗震性能分析以及pushover方法在该体系中的应用提供了参考。在此基础上,与钢梁-方钢管混凝土柱框架结构、钢梁-钢筋混凝土柱框架结构进行对比研究,比较了几种结构的动力特性,表明组合梁-方钢管混凝土柱框架结构体系相对于其它两种框架结构体系具有更好的抗震性能。  相似文献   

10.
罗靓  程博汉  吕辉 《地震工程学报》2021,43(3):710-719,736
采用ABAQUS软件建立2层1榀1跨钢筋混凝土平面框架结构的三维实体精细有限元模型进行拟动力分析,模型考虑混凝土的塑性损伤和钢材的弹塑性混合强化性质、结构阻尼和连续地震引起的塑性损伤累积效应。在位移、恢复力的计算结果与已有拟动力试验结果符合较好的基础上,进一步分析该平面框架的结构损伤、塑性耗能分配机制以及混凝土、钢筋的应力-应变。结果表明:小震、中震作用下,平面框架结构基本处于弹性阶段,大震作用时进入塑性阶段;地震往复作用使梁柱节点处混凝土比柱底更容易压碎,1层梁比2层梁更容易破坏;梁的塑性耗能占比远远大于柱,该框架为典型的"强柱弱梁"结构体系;采用的建模分析方法能有效反映结构的损伤过程,可方便地用于实际工程的抗震性能评估。  相似文献   

11.
新型错层隔震结构是基础隔震和层间隔震体系发展而来的一种新型隔震结构。强主震发生后会伴随着大量的余震出现,余震会使结构造成更大损伤。研究新型错层隔震结构分别在单独主震和主-余震作用下结构的变形与损伤,采用ETABS有限元软件建立某24层框架-核心筒结构模型进行非线性时程响应分析。结果表明:主-余震作用下,新型错层隔震结构的核心筒损伤主要集中在框架隔震层和核心筒隔震层之间,框架的塑性铰集中在框架隔震层以下部分,框架隔震层角柱支座的滞回曲线饱满且比核心筒隔震层角部隔震支座耗能好。新型错层隔震结构的最大隔震层位移均出现在框架隔震层。在余震作用下,新型错层隔震结构的损伤会显著增加。框架隔震层以上框架部分和以下框架部分以及核心筒的损伤分别增加8%、10%和19.80%。余震对隔震层的影响更大,框架隔震层和核心筒隔震层的层间位移分别增加78.70%和60.54%。  相似文献   

12.
This paper presents results from a numerical investigation into the seismic retrofit of a soft story frame using a novel gapped‐inclined brace (GIB) system. The GIB system consists of a pinned brace and a gap element that is added to the first story columns of the frame. The inclusion of GIB elements in addition to increasing the lateral capacity of columns at the first story increases the post‐yield stiffness ratio of the system and reduces the P‐delta effects on the columns, while not increasing the first story lateral resistance or stiffness. This allows for the isolating benefits of the soft story to protect the upper floors of the structure from damage while avoiding excessive deformations and reducing the propensity for collapse. A six‐story RC frame with masonry infills on all floors except for the first floor is studied. The dynamic response of the retrofitted building using the GIB system is investigated numerically and is compared with the response of the original un‐retrofitted building and the same building in which masonry infills are added to the first story to mitigate the soft story response. Results from the nonlinear time‐history analyses indicate that the GIB system could provide a reliable seismic retrofit mechanism for soft story buildings, which greatly reduces the likelihood of collapse by increasing the displacement capacity of the soft storey and by reducing P‐delta effects, while minimizing the overall damage and losses in the building by taking advantages of the isolation that is provided by the soft story to the rest of the structure located above. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
针对隔震改造后叠层橡胶隔震支座与地下室下支柱组成的串联隔震体系的地震稳定性问题,采用理论推导与数值模拟方法开展系统研究。将叠层橡胶支座简化为一种具有水平刚度和抗弯刚度的特殊铰支座,RC柱简化为弯曲型竖杆,建立橡胶支座和RC柱串联隔震体系的理论模型,推导地下室下支柱的临界承载力方程;通过实际案例求解出该串联隔震体系的临界承载力具体表达式,并对典型参数的影响进行分析;采用数值模拟方法建立下支柱截面尺寸不同的6种柱顶隔震模型,对下支柱柱顶、隔震支座、下支柱与隔震支座串联后整体位移响应以及上部结构层间位移角响应进行对比分析。结果表明:所推导的临界承载力表达式变化规律与柱顶隔震设计模型数值模拟相一致;下支柱截面增大对上部结构和隔震支座的动力响应影响并不明显,但是可以明显减小下支柱的位移;在既有建筑隔震改造实际工程中,增加下支柱的截面尺寸是保证下部结构的抗震能力高于上部结构既简单且行之有效的方法,但实际工程中截面增量普遍较大且偏于保守,造成了一定的浪费。  相似文献   

14.
Improving seismic performance is one of the critical objectives in earthquake engineering. With the development of economy and society, reparability and fast resilience of a structure are becoming increasingly important. Reinforced concrete (RC) frame structure is prone to soft story mechanism. As a result, deformation and damage are so concentrated that reparability is severely hampered. Rocking wall provides an available approach for deformation control in RC frame by introducing a continuous component along the height. Previous researches mostly focus on seismic responses of rocking wall frame structures, while damage mode and reparability have not been investigated in detail. In this study, a novel infilled rocking wall frame (IRWF) structure is proposed. A half‐scaled IRWF model was designed according to Chinese seismic design code. The model was subjected to cyclic pushover testing up to structure drift ratio of 1/50 (amplitude 1/50), and its reparability was evaluated thereafter. Retrofit was implemented by wrapping steel plates and installing friction dampers. The retrofitted model was further loaded up to amplitude 1/30. The IRWF model showed excellent reparability and satisfactory seismic performance on deformation control, damage mode, hysteresis behavior, and beam‐to‐column joint rotation. After retrofitting, capacity of the model was improved by 11% with limited crack distribution. The model did not degrade until amplitude 1/30, due to shear failure in frame beams. The retrofit procedure was proved effective, and reparability of the IRWF model was demonstrated. Seismic resilience tends to be achieved in the proposed system.  相似文献   

15.
A new isolation interface is proposed in this study to retrofit existing buildings with inadequate soft stories as well as new structures to be constructed with soft first story intended for architectural or functional purposes. The seismic interface is an assembly of bearings set in parallel on the top of the first story columns: the multiple‐slider bearings and rubber bearings. The multiple‐slider bearing is a simple sliding device consisting of one horizontal and two inclined plane sliding surfaces based on polytetrafluoroethylene and highly polished stainless steel interface at both ends set in series. A numerical example of a five‐story reinforced concrete shear frame with soft first story is considered and analyzed to demonstrate the efficiency of the proposed isolation system in reducing the ductility demand and damage in the structure while maintaining the superstructure above the bearings to behave nearly in the elastic range with controlled bearing displacement. Comparative study with the conventional system as well as various isolation systems such as rubber bearing interface and resilient sliding isolation is carried out. Moreover, an optimum design procedure for the multiple‐slider bearing is proposed through the trade‐off between the maximum bearing displacement and the first story ductility demand ratio. The results of extensive numerical analysis verify the effectiveness of the multiple‐slider bearing in minimizing the damage from earthquake and protecting the soft first story from excessively large ductility demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

17.
The linked column frame (LCF) system is proposed as a seismic load resisting system that uses conventional components to limit seismic damage to relatively easily replaced elements. The LCF features a primary lateral system, denoted the linked column, which is made up of dual columns connected with replaceable links, and a secondary flexible moment frame system with beams having fully restrained connections at one end and simple connections at the other. The linked columns are designed to limit seismic forces and provide energy dissipation via link yielding, while preventing damage to the moment frame under certain earthquake hazard levels. A design procedure is proposed that ensures plastic hinges develop in the links of the linked columns at a significantly lower story drift than when plastic hinges develop in the moment frame beams. The large drift difference helps enable design of this system for two distinct performance states: rapid return to occupancy, where only link damage occurs and relatively simple link replacement is possible, and collapse prevention, where both the links and the beams of the moment frame may be damaged. A series of 3‐story, 6‐story, and 9‐story prototype LCF buildings were designed using the proposed design approach. Nonlinear models were developed for the designs with the link models validated using recent experimental results. The seismic response of these systems was investigated for ground motions representing various seismic hazard levels. Results show that the LCF system not only provides collapse prevention, but also has the capability of limiting economic loss by reducing structural damage and allowing for rapid return to occupancy following earthquakes with shorter return periods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Base‐isolation is regarded as one of the most effective methods for protecting the structural and nonstructural building elements from design level horizontal earthquake ground shaking. However, base‐isolation as currently practiced does not offer unlimited protection for these buildings, especially when the ground shaking includes a strong vertical component. The vulnerability of nonstructural systems in a base‐isolated building was made evident during recent shake table testing of a full‐scale five‐story base‐isolated steel moment frame where nonstructural system damage was observed following tests including vertical excitation. Past research efforts have attempted to achieve 3D isolation of buildings and nuclear structures by concentrating both the horizontal and vertical flexibility at the base of the building that are either quite limited or not economically viable. An approach whereby the vertical flexibility is distributed up the height of the building superstructure to passively reduce vertical acceleration demands in base‐isolated buildings is presented. The vertical flexibility is achieved by placing laterally restrained elastomeric ‘column’ bearings at one or more floor levels along the height of the building. To broadly investigate the efficacy of the vertically distributed flexibility concept and the trade‐off between mitigation and cost, a multi‐objective optimization study was conducted considering 3‐story, 9‐story, and 20‐story archetype buildings that aimed to minimize the median peak vertical floor acceleration demands and to minimize the direct cost of column bearings. Based on the results of the optimization study, a practical rule for determining the number of levels and locations of column bearings is proposed and evaluated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three‐story and three‐span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake‐induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an ‘S’ type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号