首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zhang Hongqi 《Solar physics》1993,144(2):323-340
In this paper, the formation and the measurement of the H line in chromospheric magnetic fields are discussed. The evolution of the chromospheric magnetic structures and the relation with the photospheric vector magnetic fields and chromospheric velocity fields in the flare producing active region AR 5747 are also demonstrated.The chromospheric magnetic gulfs and islands of opposite polarity relative to the photospheric field are found in the flare-producing region. This probably reflects the complication of the magnetic force lines above the photosphere in the active region. The evolution of the chromospheric magnetic structures in the active region is caused by the emergence of magnetic flux from the sub-atmosphere or the shear motion of photospheric magnetic fields. The filaments separate the opposite polarities of the chromospheric magnetic field, but only roughly those of the photospheric field. The filaments also mark the inversion lines of the chromospheric Doppler velocity field which are caused by the relative motion of the main magnetic poles of opposite polarities in the active region under discussion.  相似文献   

2.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

3.
Reversed-polarity structures of chromospheric magnetic fields are magnetic gulfs and islands of opposite polarity relative to the underlying photospheric fields. In this paper data measured with the Solar Magnetic Field Telescope of the Huairou Solar Observing Station in Beijing were analyzed. From more than 300 pairs of photospheric magnetograms (in FeI λ5324.19 Å) and relevant chromospheric magnetograms (Hβ λ4861.34 Å), the reality of the reversed-polarity structures is demonstrated. According to an analysis of the fine structure of the magnetic field in the two layers of active regions, we found that there are probably four different types as follows: Type A: magnetic islands of opposite polarity corresponding to photospheric fields appear in the chromospheric magnetogram. Type B: magnetic gulfs of opposite polarity corresponding to photospheric fields appear in the chromospheric magnetogram. Type C is the reverse of type B. That is, a magnetic gulf of opposite polarity corresponding to the chromospheric field appears in the photospheric magnetogram. Type D is the reverse of type A.  相似文献   

4.
Several series of coordinated observations on decaying active regions and enhanced magnetic network regions have been carried out jointly at Big Bear Solar Observatory (BBSO) and Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The evolution of magnetic fields in several regions was followed closely for 3 to 7 days. The transport of magnetic flux from the remnants of decayed active regions was studied. Three related topics are included in this paper. (1) We studied the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The results are consistent with our earlier studies: network cells have an average lifetime of about 70 hours; 68% of new cells appeared by growing from a single network magnetic element; 50% of decaying cells disappeared by contracting to a network element. (2) We studied the magnetic flux transport in an enhanced network region in detail, and found the diffusion rate to be negative, i.e., there was more flux moving towards the decayed active region than away from it. We found several other cases where the magnetic diffusion rate does not agree with Leighton's model. The slow diffusion rate is likely due to the fact that the average velocity of larger magnetic elements, which carry most of the magnetic flux, is less than 0.1 km s–1; their average lifetime is longer than 100 hours. (3) We briefly described some properties of Moving Magnetic Features (MMFs) around a sunspot (detailed discussion on MMFs will be presented in a separate paper). In this particular case, the MMFs did not carry net flux away from the central spot. Instead, the polarities of MMFs were essentially mixed so that outflowing positive and negative fluxes were roughly balanced. During the 3-day period, there was almost no net flux accumulation to form a moat. The cancellation of MMFs of opposite polarities at the boundary of the super-penumbra caused quite a few surges and H brightenings.  相似文献   

5.
Zhang  Hongqi 《Solar physics》1997,174(1-2):219-227
In this paper we present the observational results of chromospheric and photospheric magnetograms in active regions obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. Simultaneous observations of the chromospheric and photospheric magnetic fields enable us to construct a possible configuration of the magnetic field in the solar atmosphere. The chromospheric magnetic field shows more diffusion than the photospheric magnetic field and consists of fibril-like features. We also discuss the possible configuration of the magnetic shear in highly sheared active regions.  相似文献   

6.
Liu  Yang  Wang  Jingxiu  Yan  Yihua  Ai  Guoxiang 《Solar physics》1996,169(1):79-89
The gradients of line-of-sight magnetic fields in active region NOAA 6659 on 1991 June 8 have been calculated based on the photospheric and chromospheric magnetograms taken at Huairou Solar Observing Station. We found that high gradients coincided with high strengths of the transverse magnetic fields, implying a complicated configuration of the magnetic field in the lower atmosphere.For this extraordinarily flare-prolific region, a possible relationship between the gradients and the flares was inferred.  相似文献   

7.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

8.
In this paper, the chromospheric magnetic structures and their relation to the photospheric vector magnetic field in the vicinity of a dark filament in active region 5669 have been demonstrated. Structural variations are shown in chromospheric magnetograms after a solar flare. Filament-like structures in the chromospheric magnetograms occurred after a solar flare. They correspond to the reformation of the chromospheric dark filament, but there is no obvious variation of the photospheric magnetic field. We conclude that (a) some of the obvious changes of the chromospheric magnetic fields occurred after the flare, and (b) a part of these changes is perhaps due to flare brightening in the chromospheric H line.During the reforming process of the dark filament, a part of its chromospheric velocity field shows downward flow, and it later shows upward flow.  相似文献   

9.
Nindos  Alexander  Zirin  Harold 《Solar physics》1998,182(2):381-392
We studied the properties and proper motions of Ellerman bombs (EBs) around a sunspot in a mature active region using high-resolution off-band H filtergrams together with nearly simultaneous magnetograms. Sixty-four percent of the EBs (class I) did not correspond accurately to enhanced magnetic field elements while the rest corresponded well to such elements (class II), which all were moving magnetic features (MMFs). We studied the lifetimes, shapes and dimensions, contrasts and time profiles of the EBs. These properties were essentially the same for both classes, in agreement with previous authors. Class I EBs did not move but class II EBs tracked the MMFs well, with horizontal proper motions up to a maximum of 1.1 km s–1 and their velocity pattern was similar to the velocity pattern of the MMFs.  相似文献   

10.
A series of H chromospheric magnetograms was obtained at various wavelengths near the line center with the vector video magnetograph at Huairou Solar Observing Station as a diagnostic of chromospheric magnetic structures. The two-dimensional distribution of the circular polarization light of the H line with its blended lines at various wavelength in active regions was obtained, which consists of the analyses of Stokes' profileV of this line. Due to the disturbance of the photospheric blended line Fei 4860.98 for the measurement of the chromospheric magnetic field, a reversal in the chromospheric magnetograms relative to the photospheric ones occurs in the sunspot umbrae. But in the quiet, plage regions, even penumbrae, the influence of the photospheric blended Fei 4860.98 line is not obvious. As regards the observation of the H chromospheric magnetograms, we can select the working wavelength between -0.20 and -0.24 from the line core of H to avoid the wavelengths of the photospheric blended lines in the wing of H.After the spectral analysis of chromospheric magnetograms, we conclude that the distribution of the chromospheric magnetic field is similar to the photospheric field, especially in the umbrae of the sunspots. The chromospheric magnetic field is the result of the extension of the photospheric field.  相似文献   

11.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

12.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

13.
Solar Active Region NOAA 2372 was observed extensively by the Solar Maximum Mission (SMM) satellite and several ground-based observatories during 1980 April 4–13 in the Solar Maximum Year. After its birth around April 4, it underwent a rapid growth and produced a reported 84 flares in the course of its disc passage. In this paper, we have studied photospheric and chromospheric observations of this active region together with Marshall Space Flight Center magnetograms and X-ray data from HXIS aboard the SMM satellite. In particular, we discuss the relationship of the flare-productivity with sunspot proper motions and emergence of new regions of magnetic flux in the active region from its birth to its disappearance at the W-limb.  相似文献   

14.
V. Bumba 《Solar physics》1996,169(2):303-312
We have compiled the results of our long-term studies of the local magnetic field and its activity development, derived from investigating sunspot group evolution, photoelectrically measured longitudinal magnetic and velocity fields, and measurements of sunspot proper motions. We estimate certain regularities according to which the magnetic and velocity fields, and photospheric, as well as chromospheric activities develop. We speculate about the physical background of such processes.Dedicated to Cornelis de Jager  相似文献   

15.
Tian  Lirong  Zhang  Hongqi  Tong  Yi  Jing  Hairong 《Solar physics》1999,189(2):305-313
In this paper, 203 bipolar active regions, in which bipolar magnetic fields are dominant, were chosen from the data set of photospheric vector magnetograms observed at Huairou Solar Observing Station in Beijing during 1988–1996. We calculated the tilts of the magnetic polarity axis in these active regions and investigated the dependence of the tilt on physical quantities such as polarity separation, total flux and the relationship between total flux and polarity separation, total area of active regions.The results are as follows:(1) The active regions with large tilt angle have smaller magnetic polarity separations.(2) The active regions with large tilt angle have smaller fluxes.(3) The active regions with large flux have larger polarity separations.(4) The active regions with large area have larger fluxes.These results will possibly provide new information about the nature and dynamic behavior of magnetic flux tubes forming active regions beneath the photosphere.  相似文献   

16.
In this paper we study some absorbing features seldom associated with flare occurrence and observed in the wings of H by means of a cinematographic patrol.We describe short lived chromospheric dark features with strong velocity fields and we show their correlation with the birth and the further development of an active center.It is shown that radial velocities precede the modifications of magnetic fields.An attempt to compare these chromospheric velocities and photospheric ones points out that it could be possible to find good correlation between them in a changing but not flaring region.  相似文献   

17.
EUV cyclones are rotating structures in the solar corona, and they are usually rooted in the underlying rotating network magnetic fields in the photosphere.However, their connection with the surrounding magnetic fields remains unknown.Here we report an observational study of four typical cyclones which are rooted in different kinds of magnetic fields. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly data to investigate the rotation of EUV features in cyclones and Helioseismic and Magnetic Imager data to study the associated magnetic fields. The results show that,(1) an EUV cyclone rooted in a sunspot rotates with the photospheric magnetic field;(2) two EUV cyclones in two faculae of an active region are connected to the same sunspot of the active region but rotate oppositely;(3) an EUV cyclone is rooted in a coronal hole with weak open magnetic fields;(4) a pair of conjugated cyclones is rooted in magnetic fields that have opposite polarity with opposite directions of rotation. The differences in the spatial extent of a cyclone, characteristics of its rotation and underlying fields indicate that cyclones are ubiquitous over the solar atmosphere and that the magnetic structures relevant to the cyclones are more complicated than expected.  相似文献   

18.
C. Beck 《Solar physics》2010,264(1):57-70
I report observations of unusually strong photospheric and chromospheric velocity oscillations in and near the leading sunspot of NOAA 10781 on 3 July 2005. I investigate an impinging wave as a possible origin of the velocity pattern and the changes of the wave after the passage through the magnetic fields of the sunspot.  相似文献   

19.
The evolution of vector photospheric magnetic fields has been studied in concert with photospheric spot motions for a flare-productive active region. Over a three-day period (5–7 April, 1980), sheared photospheric velocity fields inferred from spot motions are compared both with changes in the orientation of transverse magnetic fields and with the flare history of the region. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the B L= 0 line and with increased flare activity; a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. Crude energy estimates show that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of 1032 erg day–1, while the flares occurring during this time expended 1031 erg day–1.Maps of vertical current density suggest that parallel (as contrasted with antiparallel) currents flow along the stressed magnetic loops. For the active region, a constant-, force-free magnetic field (J = B) at the photosphere is ruled out by the observations.Presently located at NASA/MSFC, Huntsville, Ala. 35812, U.S.A.  相似文献   

20.
During 23–28 August 1988, at the Huairou Solar Observation Station of Beijing Observatory, the full development process of the region HR 88059 was observed. It emerged near the center of the solar disk and formed a medium active region. A complete series of vector magnetograms and photospheric and chromospheric Dopplergrams was obtained. From an analysis of these data, combined with some numerical simulations, the following conclusions can be drawn. (1) The emergence of new magnetic flux from enhanced networks followed by sunspot formation is an interesting physical process which can be simply described by MHD numerical simulation. The phenomena accompanying it occur according to a definite law summarized by Zwaan (1985). The condition for gas cooling and sunspot formation seems to be transverse field strength > 50 G together with longitudinal field strength > 700 G. For a period of 4 to 5 hours, the orientation of the transverse field shows little change. The configuration of field lines may be derived from vector magnetograms. The arch filament system can be recognized as an MHD shock. (2) New opposite bipolar features emerge within the former bipolar field with an identical strength which will develop a sunspot group complex. Also, arch filament systems appear there located in the position of flux emergence. The neutral line is often pushed aside and curved, leading to faculae heating and the formation of a current sheet. In spite of complicated Dopplergrams, the same phenomena occur at the site of flux emergence as usual: upward flow appears at the location of the emerging and rapidly varying flux near the magnetic neutral line, and downdraft occurs over large parts of the legs of the emerging flux tubes. The age of magnetic emerging flux (or a sunspot) can be estimated in terms of transverse field strengths: when 50 G < transverse field < 200 G, the longitudinal magnetogram and Dopplergram change rapidly, which indicates a rigourously emerging magnetic flux. When the transverse field is between 200 and 400 G, the area concerned is in middle age, and some of the new flux is still emerging there. When the transverse field > 400 G, the variation of the longitudinal magnetogram slows down and the emerging arch becomes relatively stable and a photospheric Evershed flow forms at the penumbra of the sunspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号