首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The impacts of fine sediment on riverine fish   总被引:2,自引:0,他引:2  
Elevated fine sediment input from terrestrial and aquatic sources as a result of anthropogenic activity is widely recognized to impact negatively on aquatic ecosystems. In rivers, freshwater fish are exposed to a range of impacts resulting from fine sediment pressures. To date, research on the effects of fine sediments on fish has been concentrated within relatively few families, notably the salmonidae. This paper reviews the literature describing indirect and direct impacts of fine sediment on freshwater fish as a contribution towards enhancing the understanding of the impacts of anthropogenic activities on freshwater ecosystems. We identify the causal mechanisms that underpin the observed negative response exhibited by fish populations to enhanced fine sediment loads, and the variability across different fish species. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
On December 26, 2015 (Boxing Day), an exceptional flood event occurred in the Irwell catchment, United Kingdom, when the neighbouring Mersey catchment experienced a much more typical winter run‐off event. This provided an opportunity to examine the influence of high‐magnitude hydrological processes on the behaviour of fine‐grained metal‐contaminated bed sediments. Forty sites across the two catchments were sampled for channel bed fine sediment storage and sediment‐associated metal(loid) concentrations prior to, and following, the flooding. Sediments were analysed for total As, Cr, Cu, Pb, and Zn and then subjected to a five‐step sequential extraction procedure. Despite a significant reorganisation of fine‐grained (<63 μm) sediment storage, metal(loid) concentrations demonstrated markedly conservative behaviour with no significant difference observed between pre‐flooding and post‐flooding values across both catchments. Estimates of the channel bed storage of sediment‐associated metal(loid)s also showed minimal change as a result of the flooding. The metal partitioning data reveal only minor changes in the mobility of bed sediment‐associated metal(loid)s, indicating that such flood events do not increase the availability of sorbed contaminants in these catchments. Post‐flooding bed sediment metal(loid) loadings remain high, indicating persistent and long‐lasting sources of contamination within the Irwell and upper Mersey fluvial network.  相似文献   

5.
随着云南社会经济的持续发展与极端气候事件的频发,高原大中型湖泊面临着水质恶化、生态与环境功能退化的长期胁迫.为识别亚热带大型湖泊面临的主要环境压力,以杞麓湖为研究对象,在对沉积物钻孔进行物理(粒度、烧失量)、生物(色素、硅藻)等指标分析的基础上,结合现代监测和湖泊调查数据,重建了近两百年来湖泊水文条件、富营养化和环境变化的历史,并对硅藻群落结构的演化进行了驱动过程识别.沉积物粒度在1958年之前变化总体较为稳定且有较高的黏土含量;随着围湖造田等流域开发的增强,沉积物粒度组成自1960s开始频繁波动且粗颗粒组分快速增加.1981—2000年期间,随着落水洞泄水工程的修建杞麓湖的水位控制与水文调控得到加强,沉积物砂质含量降低且粒度组成变化较小;2000—2013年期间,湖泊疏浚工程的开展和区域降水的持续减少都导致了沉积物粒度组成波动较大、粗颗粒组成较高.沉积物色素记录了湖泊初级生产力的缓慢上升出现于19世纪中后期,并自1960s开始总叶绿素与蓝藻色素含量总体出现了较大幅度的增加趋势并持续至今.而在2000—2005年期间,湖泊浅水区的疏浚清淤导致了内源营养盐输入量的降低与藻类生物量的明显下降;沉积物蓝藻色素含量在1998、2008和2012—2013年左右出现明显的峰值,指示杞麓湖可能出现了较大范围的蓝藻暴发事件.统计分析结果显示,湖泊硅藻群落结构出现了多次明显转变且呈现底栖硅藻百分比长期降低的特征,水体富营养化的持续是驱动硅藻群落结构演替的主要因子,而水生植物退化、水文条件与气候变化也对硅藻群落的构建产生了重要的叠加影响.本文的沉积物分析结果表明,亚热带大型湖泊的生态治理与环境保护需要重点围绕营养盐负荷控制、水文调控优化与底栖生境恢复,并需应对全球变暖与极端气候事件产生的叠加影响.  相似文献   

6.
Model predictions concerning the endangerment of on‐site and off‐site damages due to runoff, soil erosion and sedimentation under alternative design and operation policies are of particular importance in recent catchment planning and management. By using the raster‐based model approach, linear landscape elements, such as streets and roads, and their impacts on flow paths are often neglected. Therefore, the aim of this study was to analyse the effects of linear landscape elements on patterns of soil erosion, sediment transport and sedimentation. To accomplish this, roads are considered while determining flow paths. Simulations in the well‐investigated catchment of the Wahnbach River (54 km²) in a low mountain range in Germany were carried out using a combination of different models for hydrology and soil erosion. Although the study focuses on the catchment scale of the Wahnbach River, detailed investigations concerning the sub‐catchment scale (21 ha) were also conducted. The simulation results show that these spatial structures mainly affect the pattern of soil erosion and sedimentation. On the sub‐catchment scale, improved identification of active zones for sediment dynamic becomes possible. On the catchment scale, the predicted runoff is about 20% higher, and sediment outputs were four times larger than predicted when roads were considered. Soil erosion increases by 37% whereas sedimentation is reduced by 29%. The model improvement could not be evaluated on the catchment scale because of the high variability and heterogeneity of land use and soils, but road impacts could be explained by simulations on the sub‐catchment scale. It can be concluded that runoff concentration due to rerouted flow paths leads to lower non‐concentrated and higher concentric‐linear surface runoff. Thus, infiltration losses decline and surface runoff and soil erosion increase because sedimentation is reduced. Further, runoff concentration can cause soil erosion hot spots. In the model concept used in this study, buffering of runoff and sediments on the upslope side of roads and in local depressions adjacent to roads cannot be simulated. Flow paths will only be rerouted because of road impacts, but the temporal ponding of water is not simulated. Therefore, the drastic increase of predicted sediment output due to road impact does not seem to be reliable. However, results indicate that the consideration of roads when determining flow paths enabled more detailed simulations of surface runoff, soil erosion and sedimentation. Thus, progress in model‐based decision‐making support for river catchment planning and management can be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Sediment plays a pivotal role in determining the physical, chemical and biological integrity of aquatic ecosystems. A range of factors influences the impacts of sediment pressures on aquatic biota, including concentration, duration of exposure, composition and particle size. In recognition of the need to assess environmental status for sediment and mitigate excessive sediment pressures on aquatic habitats, both water column and river substrate metrics have been proposed as river sediment targets. Water column metrics include light penetration, turbidity, sediment concentration summary statistics and sediment regimes. Substrate metrics include embeddedness, the fredle index and riffle stability. Identification of meaningful numeric targets along these lines has, however, been undermined by various issues including the uncertainty associated with toxicological dose‐response profiles and the impracticalities of deploying statistically robust sampling strategies capable of supporting catchment‐scale targets. Many of the thresholds reported are based on correlative relationships that fail to capture the specific mechanisms controlling sediment impacts on aquatic habitats and are stationary in nature. Temporal windows represented by the key life stages of specific species must be given greater emphasis. Given such issues and the need to support the revision of sediment targets for river catchment management, it is proposed that greater emphasis should be placed on developing generic modelling toolkits with the functionality for coupling current or future projected sediment regimes with biological response for a range of biota. Such tools should permit the identification of river catchment‐specific targets within a national context, based on biological effect and incorporate sufficient flexibility for utilizing updated physical, chemical, biological and catchment attribute data. Confidence will continue to be required in compliance screening to ensure cost‐effective management programmes for avoiding disproportionate investment in impacted river catchments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A study was carried out on a rural catchment located in northwest Spain to examine the sediment yield from the catchment by measuring suspended sediments during rainfall events. Within the catchment regular surveys were conducted to obtain data on the suspended sediment sources. Important variations in sediment load were detected at event scale (0·3–21·0 Mg); some of these can be explained in terms of event size, antecedent conditions, rainfall distribution and soil surface erosion. To study the variables controlling suspended sediment yield during the events in the catchment, several event and pre‐event variables were calculated for all events. The sediment load is strongly influenced by discharge variables. During the events discharge–suspended sediments were also analysed. When the soil surface was unprotected, the formation of rills and ephemeral gullies on agricultural land at the catchment head was an important source of suspended sediments in the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Accelerated erosion of fine‐grained sediment is an environmental problem of international dimensions. Erosion control strategies and targeting of mitigation measures require robust and quantitative identification of sediment sources. Here, we use magnetic ‘fingerprinting’ to characterize soils, and examine their affinity with and contribution to suspended sediments transported within two subcatchments feeding Bassenthwaite Lake, northwest England. A high‐resolution soil magnetic susceptibility survey was made using a field susceptometer (ZH Instruments, SM400 probe). Combining the spatial and vertical (down‐profile) soil magnetic data, a subset of soil profiles was selected for detailed, laboratory‐based magnetic remanence analyses. The magnetic properties of the catchment soils are highly particle size‐dependent. Magnetic analyses were performed on the 31–63 µm fraction, for particle size‐specific comparison both with the suspended sediments and lake sediments. Fuzzy cluster analysis groups the soil magnetic data into six clusters, apparently reflecting variations in parent material and horizon type, with three magnetically hard soils as unclassified outliers. Examination of the cluster affinity of the soils, suspended sediments and lake sediments indicates that topsoils of the upper Newlands Valley and subsoils around Keskadale Beck are a major source of the Newlands Beck suspended load, and the recent (post‐nineteenth century) sediments in the deep lake basin. Older lake sediments show strong affinity with a small number of the Derwent suspended sediments and one of the Glenderamackin soils. A large number of Derwent suspended sediments show no affinity with any of the soils or lake sediments, instead forming a coherent, discrete and statistically unclassified group, possibly resulting from mixing between the magnetically hard subsoils of the medium to high‐altitude Glenderamackin and Troutbeck areas and softer, lower altitude Glenderamackin soils. The lack of any affinity of these suspended sediments with the lake sediments may indicate deposition along the Derwent flood plain and/or in the shallow delta of Lake Bassenthwaite. Particle size‐specific magnetic fingerprinting is thus shown to be both highly discriminatory and quantitatively robust even within the homogeneous geological units of this catchment area. Such a methodological approach has important implications for small–large scale catchment management where sources of sediment arising from areas with uniform geology have been difficult to determine using other approaches, such as geochemical or radionuclide analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Wood additions to streams can slow water velocities and provide depositional areas for bacteria and fine particles (e.g., particulate organic carbon and nutrients sorbed to fine sediment), therefore increasing solute and particle residence times. Thus, wood additions are thought to create biogeochemical hotspots in streams. Added wood is expected to enhance in-stream heterogeneity, result in more complex flow paths, increase natural retention of fine particles and alter the geomorphic characteristics of the stream reach. Our aim was to directly measure the impact of wood additions on fine particle transport and retention processes. We conducted conservative solute and fluorescent fine particle tracer injection studies in a small agricultural stream in the Whatawhata catchment, North Island of New Zealand in two reaches—a control reach and a reach restored 1-year earlier by means of wood additions. Fine particles were quantified in surface water to assess reach-scale (channel thalweg) and habitat-scale (near wood) transport and retention. Following the injection, habitat-scale measurements were taken in biofilms on cobbles and by stirring streambed sediment to measure fine particles available for resuspension. Tracer injection results showed that fine particle retention was greater in the restored compared to the control reach, with increased habitat-scale particle counts and reach-scale particle retention. Particle deposition was positively correlated with cobble biofilm biomass. We also found that the addition of wood enhanced hydraulic complexity and increased the retention of solute and fine particles near the wood, especially near a channel spanning log. Furthermore, particles were more easily remobilized from the control reach. The mean particle size remobilized after stirring the sediments was ~5 μm, a similar size to both fine particulate organic matter and many microorganisms. These results demonstrate that particles in this size range are dynamic and more likely to remobilize and transport further downstream during bed mobilization events.  相似文献   

11.
Post‐logging changes in catchment sediment yield have traditionally been attributed to increases in hillslope erosion and delivery rates as a result of forest harvesting activities. Linking hillslope erosion to catchment yield in forestry environments remains difficult, however, primarily because of the scarcity of data on the nature of hillslope sediment storage and delivery processes. A large rainfall simulator (350 m2) was used to apply rainstorms to a logged hillslope containing a snig track (skid trail) and a general logging or harvesting area (GHA) on 10 forest compartments in south‐eastern Australia. The experiments confirmed that the compacted, disturbed surfaces, such as roads and tracks, are the dominant sources of sediment in forestry areas. Sediment transport rates were limited by available sediment supply on both the snig track and the GHA, introducing important implications for the modelling of these surfaces using sediment transport capacity theories. Sediment delivery from the snig track to the adjacent GHA, via a cross‐bank (drainage diversion), was strongly influenced by the percentage fine fraction in the eroded sediment. Preferential deposition of coarse aggregates was measured at erosion control structures and on the adjacent GHA. Over 50% of fine‐grained material were deposited on the hillslope over a relatively short, flow path length of <5 m, highlighting the effectiveness of runoff diversion as a practice in reducing sediment flux. The transfer of water and sediment from disturbed to less disturbed parts of the landscape, and the associated potential for sediment storage, needs to be considered as part of any catchment impact assessment. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
River restoration works often include measures to promote morphological diversity and enhance habitat suitability. One of these measures is the creation of macro‐roughness elements, such as lateral cavities and embayments, in the banks of channelized rivers. However, in flows that are heavily charged with fine sediments in suspension, such as glacier‐fed streams and very low‐gradient reaches of large catchment rivers, these lateral cavities may trap these sediments. Consequently, the morphological changes may be affected, and the functionality of the restoration interventions may be compromised. Herein, we analyse the influence of these macro‐roughness elements on the transport of fine sediments in the main channel. Laboratory tests with uniform flow charged with sediments in a channel with banks equipped with large‐scale rectangular roughness elements were carried out. The laboratory experiments covered a wide range of rectangular cavity geometrical configurations and shallowness ratios. The influence of key parameters such as flow shallowness, geometric ratios of the cavities and initial sediment concentration was tested. Surface particle image velocimetry, sediment samples and temporal turbidity records were collected during the experiments. The amount of sediments captured by the cavities, the temporal evolution of the concentration of sediments in suspension and the flow hydrodynamics are cross‐analysed and discussed. It is shown that the trapping efficiency of the macro‐roughness elements is a clear function of the channel geometry and the shallowness of the flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River, based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36–62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953–1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68–118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

15.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

16.
In Finland a great number of forest lakes are affected by silvicultural practices such as logging. Logging affects water chemistry and thus the ecological state of lakes by causing nutrient loads and increasing erosion and humic substances in water. Water quality assessment requires definition of natural background conditions and ecological status of water bodies. Therefore it is necessary to determine the impact of these practices on aquatic organisms. In the absence of long-term monitoring data, paleolimnological methods provide a powerful tool for determining human-induced changes in lakes. In this study diatom assemblages, diatom-inferred water total phosphorus and total organic carbon, and sediment chemistry were analyzed from the sediments of six lakes with a logged catchment area (11-53%). According to one-way analysis of similarities (ANOSIM) the diatom communities of three lakes were different before, immediately after and more than 10 years after logging and diatom assemblages in remaining three lakes did not show statistically significant differences between these times. However, all changes were minor, and at present the diatom assemblages and diatom-inferred water chemistry of all the lakes are close to the pre-logging conditions. The minor alterations are probably due to the wide protective zones around the lakes.  相似文献   

17.
Dairying is an intensive form of agriculture influencing stream ecosystems worldwide via increased levels of nutrients, deposited fine sediment and other contaminants. However, it is not fully understood how dairy farming affects food supply for stream fish. We investigated relationships between dairy farming prevalence in the catchments of nine tributaries of a New Zealand river (0% to 79% of the catchment area) and fish and invertebrate communities. Streams were sampled four times at monthly intervals for brown trout density, fitness/growth-related trout response variables, native fish density, invertebrate community metrics as well as physical and chemical water quality variables. Densities of both brown trout and native fish declined as dairying increased, with no trout found in streams where dairy farms covered more than 50% of the catchment area. Increasing dairy farming prevalence was also associated with higher in-stream levels of dissolved nutrients and deposited fine sediment. These findings suggest that increasing the extent of dairy farming in New Zealand based on practices at the time of sampling results in less abundant and diverse fish communities.  相似文献   

18.
Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial‐scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF‐TWI, a catchment‐scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF‐TWI produced mean annual sediment exports within 9–20% of sediment core‐based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field‐scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8–16%) compared to current moorland vegetation but a larger reduction in sediment exports (26–46 versus 4–30%). Riparian woodland buffers reduced upland sediment yields by 15–41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF‐TWI can support hydrologically‐informed decision making to better target conservation measures in humid agricultural environments. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
The utility of sediment budget analysis is explored in revealing spatio‐temporal changes in the sediment dynamics and morphological responses of a fluvial system subject to significant human impacts during the recent Anthropocene. Sediment budgets require a data‐intensive approach to represent spatially‐differentiated impacts adequately and are subject to numerous estimation uncertainties. Here, field and topographic surveys, historical data, numerical modelling and a representative‐area extrapolation method are integrated to construct a distributed, process‐based sediment budget that addresses historical legacy factors for the highly regulated Lagunitas Creek (213 km2), California, USA, for the period 1983–2008. Independent corroboration methods and error propagation analysis produce an uncertainty assessment unique to a catchment of this size. Current sediment yields of ~20 000 t a‐1 ± 6000 t a‐1 equate to unit rates of ~300 t km‐2 a‐1 ± 90 t km‐2 a‐1 over the effective sediment contributing area of 64 km2. This is comparable with yields associated with early Euro‐American settlement in the catchment, despite loss of sediment supply upstream of the two large dams. It occurs because ~57% of the sediment is now derived from incision‐related channel erosion. Further, the highly efficient routing of channel‐derived sediments in these incised channels suggests an efflux of 84% of contemporary sediment production, contrasting with the efflux of ≈10–30% reported for unregulated agricultural catchments. The results highlight that sediment budgets for regulated rivers must accommodate channel morphological responses to avoid significantly misrepresenting catchment yields, and that volumetric precision in sediment budgets may best be improved by repeat, spatially dense, channel cross‐section surveys. Human activities have impacted every aspect of the sediment dynamics of Lagunitas Creek (production, storage, transfer, rates of movement through storage), confirming that, while distributed sediment budgets are data demanding and subject to numerous error sources, the approach can provide valuable insights into Anthropocene fluvial geomorphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Tagus intertidal microphytobenthos (MPB) assemblages were characterized over a wide range of sediment type and tidal height and the possible effects of these variables on MPB spatial distribution and photo-adaptation mechanisms were investigated. Two transects with six different sediment type and different tidal height sites were sampled once every two months from 2002 to 2004. Upper shore and sandy sites showed higher chlorophyll a (chl a) content, with sandy sediments showing a biomass peak in late winter–early spring, and muddy sites showing no obvious seasonal pattern. Stepwise multiple linear regressions showed that only SiO2, tidal height and sediment particle size <63 μm were significant variables (p<0.05), explaining 50% of MPB biomass spatial–temporal variability. However, when data were separated by transect, only tidal height remained significant at both transects. Sandier sediments exhibited higher zeaxanthin/chl a and lower fucoxanthin/chl a ratios characteristic of a mixed cyanobacteria/diatom assemblages, showing an alternate seasonality with cyanobacteria increasing in summer and diatoms dominating in spring. Diatom biofilms showed contrasting features depending on the sediment type. Epipsammic diatoms were small with an average length of around 10 μm, while epipelic diatoms showed a wider size range with size distribution peaks at 10–15 μm, 25–35 μm and >60 μm. Epipelic biofilms showed evidence of being low light-acclimated (high fucoxanthin/chl a) and of photo-regulating by vertical migration movements (presence of endogenous vertical rhythms and lower diatoxanthin/diadinoxanthin). Epipsammic biofilms showed higher diatoxanthin/diadinoxanthin ratios and no vertical migration rhythms. Thus, the two diatom biofilm types had distinct strategies to photo-regulate: epipelic diatoms using vertical migration to position themselves at the sediment depth of optimum light conditions, and epipsammic diatoms using the xanthophyll cycle to photo-regulate. Further studies comparing epipsammic and epipelic assemblages are necessary to better understand MPB photo-regulation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号