首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The Dissolved Organic Carbon (DOC) content of rivers is the most significant part of the carbon cycle migration in the basin under consideration, and it is the basis for a comprehensive understanding of the regional carbon cycle. In this study, we periodically collected samples from four monitoring stations in the Xiying River Basin of the Qilian Mountains in the northern Qinghai-Tibet Plateau. We calculated the fluxes of organic carbon in the rivers within the study area and have discussed the influencing factors of DOC concentration in these rivers. The results showed that: (a) The DOC concentration and transport flux of the Xiying river showed significant seasonal changes. The DOC concentration during summer and autumn was higher than that in winter and spring, and the output flux in summer and autumn accounted for approximately 88.3% of the total annual output. (b) Precipitation runoff has a higher DOC concentration than meltwater runoff. Climate factors, river-water chemical characteristics, and seasonal frozen-soil changes in the river basin have significant effects on the river DOC concentration and transport flux. (c) Larger runoff causes higher DOC concentrations in rivers. Runoff is the primary means of carbon migration in the inland river basin. Carbon migration is significant from the upstream to the middle and downstream sections of the inland river basin.  相似文献   

3.
F. Worrall  T. P. Burt  J. Adamson 《水文研究》2008,22(16):3181-3193
This study considers three long records of dissolved organic carbon (DOC) flux from two catchments with peat‐covered headwaters. The catchments vary in size from 11 to 818 km2 and the records are at least 12 years old, with one record going back to 1965. The study compares both annual and monthly DOC flux records with a range of hydroclimatic indicators in order to test which component of droughts may contribute to increasing DOC flux. The study found that: (1) there was no significant correlation between any of the proposed drought variables and DOC flux in any of the study catchments over periods of up to 34 years; (2) the most important variable for explaining the DOC flux was the runoff from the catchments overlying a seasonal cycle and an underlying upward trend was present in some records; (3) the residual time‐series, after removal of the best‐fit models, showed no evidence of increased production after times of severe drought. The lack of any evidence for any additional biogeochemical reactions associated with drought supports evidence that DOC loss from peat is limited by its solubility and that its production is fast on the time‐scale of runoff events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Boreal mire landscapes are rich in soil carbon and significantly contribute to the carbon input of aquatic ecosystems. They are composed of different mesoscale ecohydrological subunits, whose individual contributions to the water and carbon export of mire catchments are not well understood. The spring snowmelt period is the major hydrological event in the annual water cycle of the boreal regions and strongly influences the carbon flux between the terrestrial and aquatic systems. The aim of this study was (1) to provide a conceptual understanding of the spatial and temporal dynamics of the surface water chemistry along a swamp forest‐fen‐bog gradient during the snowmelt period, (2) to quantify the exported dissolved organic carbon (DOC) content in the runoff and (3) to identify the ecohydrological landscape unit that contributes most to DOC export during the snowmelt period in a heterogeneous mire complex in Northwest Russia. The highest DOC concentrations were detected in the swamp forest, and the lowest concentrations were observed at the treeless bog by the end of the snowmelt period (swamp forest: 37–43 mg l?1, bog: 13–17 mg l?1). During the spring snowmelt period, a significant amount (~1.7 g C m?2) of DOC was transferred by the ~74 mm of runoff from the catchment into the river. Variability in the thawing periods led to differences in the relative contributions of each ecohydrological zone to the carbon export measured at a stream channel draining the studied part of the mire complex. An increased understanding of the variation in DOC concentrations and contributions from the mesoscale ecohydrological subunits to carbon export can help to predict the potential regional loss of DOC based on land cover type under climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour.  相似文献   

6.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

7.
The impacts of land use intensity, here defined as the degree of imperviousness, on stormwater volumes, runoff rates and their temporal occurrence were studied at three urban catchments in a cold region in southern Finland. The catchments with ‘High’ and ‘Intermediate’ land use intensity, located around the city centre, were characterized by 89% and 62% impervious surfaces, respectively. The ‘Low’ catchment was situated in a residential area of 19% imperviousness. During a 2‐year study period with divergent weather conditions, the generation of stormwater correlated positively with catchment imperviousness: The largest annual stormwater volumes and the highest runoff coefficients and number of stormwater runoff events occurred in the High catchment. Land use intensity also altered the seasonality of stormwater runoff: Most stormwater in the High catchment was generated during the warm period of the year, whereas the largest contribution to annual stormwater generation in the Low catchment took place during the cold period. In the two most urbanized catchments, spring snow melt occurred a few weeks earlier than in the Low catchment. The rate of stormwater runoff in the High and Intermediate catchments was higher in summer than during spring snow melt, and summer runoff rates in these more urbanized catchments were several times higher than in the Low catchment. Our study suggests that the effects of land use intensity on stormwater runoff are season dependent in cold climates and that cold seasons diminish the differences between land use intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

9.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

10.
The blocking of drainage ditches in peat has been proposed as a possible mitigation strategy for the widely observed increases in dissolved organic carbon (DOC) concentrations from northern peatlands. This study tested the hypothesis that drain‐blocking could lead to lower DOC concentrations by measuring the DOC export from a series of small peat‐covered catchments over a period of 2 years. Six catchments were chosen: two were pristine that had never been drained; three where drains had been blocked (one in 1995, and two in 2003); and a control peat drain catchment where the drain was left unblocked throughout the study. In the case where drains were blocked as part of thus study, the drains were observed for 2 months before blocking and 2 years after blocking. The results show that: (i) high concentrations of DOC can come from water ponded in the drain; (ii) the DOC export (flux of DOC per area of catchment) from the six study catchments shows a high degree of positive correlation with both catchment size and water yield; (iii) distinctly lower DOC export with water yield was observed for the catchments containing higher‐order channels (>27 500 m2) as opposed to single drain catchments (>7500 m2); (iv) drain‐blocking resulted in a statistically significant decrease in DOC export (average was 39%) but the effect upon DOC concentration explained only 1% of the variance in the data. The results suggest that drain blocking works by decreasing the flow from the drain, not by changing the production of DOC in the peat. The change in export with catchment size implies a considerable removal of DOC from large catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《水文科学杂志》2013,58(3):538-549
Abstract

Trend analysis was performed on streamflow data for a collection of stations on the Canadian Prairies, in terms of spring and summer runoff volumes, peak flow rates and peak flow occurrences, as well as an annual volume measure, for analysis periods of 1966–2005, 1971–2005, and 1976–2005. The Mann-Kendall statistical test for trend and bootstrap resampling were used to identify the trends and to determine the field significance of the trends. Partial correlation analysis was used to identify relationships between hydrological variables that exhibit a significant trend and meteorological variables that exhibit a significant trend. Noteworthy results include decreasing trends in the spring snowmelt runoff event volume and peak flow, decreasing trends (earlier occurrence) in the spring snowmelt runoff event peak date and decreasing trends in the seasonal (1 March–31 October) runoff volume. These trends can be attributed to a combination of reductions in snowfall and increases in temperatures during the winter months.  相似文献   

12.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

13.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
MAURI S. PELTO 《水文研究》1996,10(9):1173-1180
From 1985 to 1993, the mean summer temperature was 1.1°C above the long-term mean and the mean winter precipitation was 11% below the long-term mean at the eight Washington State Cascade Mountain weather stations. The effect of this climate fluctuation on glacier and alpine runoff has been examined in five North Cascade basins. From 1985 to 1993 the two basins with less than 1% glacier-covered area experienced mean 1 July to 30 September (late summer) runoff 36% below the long-term mean. The three moderately glaciated basins (3, 6 and 14% glaciated, respectively) experienced a 13% decline in late summer runoff for the same period. A significant change in late summer runoff has occurred in the North Cascades and this change is less pronounced in glacier basins. The cause of the change is decreased winter precipitation and earlier onset of spring melting of the alpine snowpack, followed by above average summer temperatures and an earlier summer melt of alpine snowpack. The smaller decrease in runoff in glacial basins is due to increased ablation and consequent glacier runoff due to high summer temperatures. However, glacier retreat is also reducing glacier runoff.  相似文献   

16.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A model study on the impact of climate change on snow cover and runoff has been conducted for the Swiss Canton of Graubünden. The model Alpine3D has been forced with the data from 35 Automatic Weather Stations in order to investigate snow and runoff dynamics for the current climate. The data set has then been modified to reflect climate change as predicted for the 2021–2050 and 2070–2095 periods from an ensemble of regional climate models.The predicted changes in snow cover will be moderate for 2021–2050 and become drastic in the second half of the century. Towards the end of the century the snow cover changes will roughly be equivalent to an elevation shift of 800 m. Seasonal snow water equivalents will decrease by one to two thirds and snow seasons will be shortened by five to nine weeks in 2095.Small, higher elevation catchments will show more winter runoff, earlier spring melt peaks and reduced summer runoff. Where glacierized areas exist, the transitional increase in glacier melt will initially offset losses from snow melt. Larger catchments, which reach lower elevations will show much smaller changes since they are already dominated by summer precipitation.  相似文献   

18.
Alpine glaciers and perennial snow fields are important hydrologic elements in many mountain environments providing runoff during the late summer and during periods of drought. Because relatively long records of glacier mass–balance data are absent from many glacierized catchments, it remains unclear to what extent shrinking perennial snow and glaciers have affected runoff trends from these watersheds. Here, we employ a hydrograph separation technique that uses a double mass curve in an attempt to isolate changes in runoff due to glacier retreat and disappearance of perennial snow. The method is tested using hydrometric data from 20 glacierized and 16 nonglacierized catchments in the Columbia Basin of Canada. The resulting estimates on cryosphere storage contribution to streamflow were well correlated to other regional estimates on the basis of measurements as well as empirical and mechanistic models. Annual cryosphere runoff changed from +19 to ?55% during the period 1975–2012, with an average decline of 26%. For August runoff, these changes ranged from +17 to ?66%, with an average decrease of 24%. Reduction of cryosphere contributions to annual and late summer flows is expected to continue in the coming decades as glaciers and the perennial snow patches shrink. Our method to isolate changes in late summer cryospheric storage contributions can be used as a first order estimate on changes in glacier contributions to flow and may help researchers and water managers target watersheds for further analysis.  相似文献   

19.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号