首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The melting curves of the structural analogues SiO 2, BeF 2 and GeO 2 have been studied at pressures ?40 kbar in a piston-cylinder apparatus. The initial slopes dTm/dP of the β-quartz-liquid boundaries for SiO 2 and BeF 2 are ~35° while the slope of the rutile-liquid boundary for GeO 2 is approximately 32°C/kbar. These large values of dT/dP reflect the unusually low entropies of fusion for these compounds in which strong structural similarities exist between the crystalline phases and the melt. Implications for the extended phase diagram of silica are discussed and it is concluded that either: (1) a maximum exists on the coesite melting curve, or (2) estimates of the melting temperature of stishovite need to be revised upwards.  相似文献   

2.
Solvi and liquidi for various LiFMgF2 mixtures have been determined at pressures up to 40 kbar by differential-thermal-analysis in a piston-cylinder high-pressure device. The melting curves of pure LiF and MgF2 were also studied and the initial slopes (dTm/dP)P = 0 were found to be 11.2 and 8.3°C/kbar, respectively. The eutectic composition (LiF)0.64(MgF2)0.36 is independent of pressure to 35 kbar and the eutectic temperature rises approximately 6.3°C per kbar. Initial slopes of 11°C/kbar and 35°C/kbar are inferred for the melting curves of MgO and SiO2 (stishovite) respectively, on the basis of data for their structural analogue compounds. The observed solid solution of LiF in MgF2 and other evidence suggest the possibility of solid solution in the system (Mg,Fe)OSiO2 (stishovite) under mantle conditions which may have important consequences for the elastic properties of a “mixed-oxide” zone of the earth's mantle.  相似文献   

3.
High-pressure stability relations in cobalt and nickel silicates have been studied over the pressure range 130–330 kbar employing a double-staged split-sphere-type high-pressure apparatus.γ-Co2SiO4 and γ-Ni2SiO4 decompose directly into their constituent oxide mixtures (rocksalt plus stishovite) 175 kbar and 280 kbar, respectively. The result that γ-Ni2SiO4 has a wider stability field in pressure than γ-Co2SiO4, is consistent with simple crystal-field theory.The experimental precision is high enough to show that the decomposition boundary of γ-Co2SiO4 has a positive slope (dP/dT > 0) and a preliminary determination of the boundary curve is P(kbar) = 0.065 T (°C) + 110.No positive evidence for the existence of high-pressure forms of CoSiO3 and NiSiO3 has been obtained in these quenching experiments, and they finally decompose into constituent oxide mixtures as in the cases of orthosilicates.  相似文献   

4.
Phase transformations in baddeleyite (ZrO2) and zircon (ZrSiO4) have been investigated in the pressure range between 100 and 300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. Baddeleyite has been found to transform to an orthorhombic cotunnite-type structure at pressures greater than 100 kbar, and is the first oxide known to adopt this structure. The lattice parameters of the cotunnite-type ZrO2 at room temperature and atmospheric pressure area = 3.328 ± 0.001 ,b = 5.565 ± 0.002 , andc = 6.503 ± 0.003A? withZ = 4 , and its volume is 14.3% smaller than baddeleyite and 7.6% smaller than the fluorite-type ZrO2. It is suggested that all the polymorphic structures of ZrO2 are possible high-pressure models for the post-rutile phase of SiO2. The polyhedral coordination in these model structures varies from 7 to “9”, compared with 6 for stishovite. If SiO2 were to adopt any of these structures in the deep mantle, Birch's hypothesis of a mixed-oxide lower mantle may still be viable, but the primary coordination of silicon would be greater than 6. Zircon has been found to transform to a scheelite-type structure at about 120 kbar as noted earlier. The scheelite-type ZrSiO4 was found to decompose further into a mixture of ZrO2 (cotunnite-type) plus SiO2 (stishovite) in the pressure range 200–250 kbar. As implied by the transitions in zircon, the large cations of U and Th in the earth's deep mantle are most likely to occur in dioxides with structures such as the cotunnite-type, rather than to occur in silicates.  相似文献   

5.
Pressure effects on the lattice parameters of β- and γ-Mg2SiO4 have been measured at room temperature and at pressures up to 100 kbar using a multi-anvil high-pressure X-ray diffraction apparatus. The volume changes (ΔV/V0) at 90 kbar are 5.4 · 10?2 and 4.2 · 10?2 for β- and γ-Mg2SiO4, respectively. Isothermal bulk moduli at zero pressure have been calculated from least-square fits of the data to straight lines. They turn out to be 1.66 ± 0.4 and 2.13 ± 0.1 Mbar for β- and γ-Mg2SiO4, respectively. The α → γ transition obeys Wang's linear Vφ?ρ relation but the αβ transition does not.  相似文献   

6.
The melting curve of perovskite MgSiO3 and the liquidus and solidus curves of the lower mantle were estimated from thermodynamic data and the results of experiments on phase changes and melting in silicates.The initial slope of the melting curve of perovskite MgSiO3 was obtained as dTm/dP?77 KGPa?1 at 23 GPa. The melting curve of perovskite was expressed by the Kraut-Kennedy equation as Tm(K)=917(1+29.6ΔVV0), where Tm?2900 K and P?23 GPa; and by the Simon equation, P(GPa)?23=21.2[(Tm(K)2900)1.75?1].The liquidus curve of the lower mantle was estimated as Tliq ? 0.9 Tm (perovskite) and this gives the liquidus temperature Tliq=7000 ±500 K at the mantle-core boundary. The solidus curve of the lower mantle was also estimated by extrapolating the solidus curve of dry peridotite using the slope of the solidus curve of magnesiowüstite at high pressures. The solidus temperature is ~ 5000 K at the base of the lower mantle. If the temperature distribution of the mantle was 1.5 times higher than that given by the present geotherm in the early stage of the Earth's history, partial melting would have proceeded into the deep interior of the lower mantle.Estimation of the density of melts in the MgOFeOSiO2 system for lower mantle conditions indicates that the initial melt formed by partial fusion of the lower mantle would be denser than the residual solid because of high concentration of iron into the melt. Thus, the melt generated in the lower mantle would tend to move downward toward the mantle-core boundary. This downward transportation of the melt in the lower mantle might have affected the chemistry of the lower mantle, such as in the D″ layer, and the distribution of the radioactive elements between mantle and core.  相似文献   

7.
The densities of silicate liquids with basic, picritic, and ultrabasic compositions have been estimated from the melting curves of minerals at high pressures. Silicate liquids generated by partial melting of the upper mantle are denser than olivine and pyroxenes at pressures higher than 70 kbar, and garnet is the only phase which is denser than the liquid at pressures from 70 kbar to at least 170 kbar. In this pressure range, garnet and some fraction of liquid separate from ascending partially molten diapirs. It is therefore suggested that aluminium-depleted komatiite with a high Ca/OAl2O3 ratio may be derived from diapirs which originated in the deep upper mantle at pressures from 70 kbar to at least 140 kbar (200–400 km in depth), where selective separation of pyropic garnet occurs effectively. On the other hand, aluminium-undepleted komatiite is probably derived from diapirs originating at shallower depths (< 200 km). Enrichment of pyropic garnet is expected at depths greater than 200 km by selective separation of garnet from ascending diapirs. The 200-km discontinuity in the seismic wave velocity profile may be explained by a relatively high concentration of pyropic garnet at depths greater than 200 km.  相似文献   

8.
In a diamond-anvil press coupled with YAG laser heating, the spinels of Co2GeO4 and Ni2GeO4 have been found to disproportionate into their isochemical oxide mixtures at about 250 kbar and 1400–1800°C in the same manner as their silicate analogues. At about the same P-T conditions MnGeO3 transforms to the orthorhombic perovskite structure (space group Pbnm); the lattice parameters at room temperature and 1 bar are a0 = 5.084 ± 0.002, b0 = 5.214 ± 0.002, and c0 = 7.323 ± 0.003Å with Z = 4 for the perovskite phase. The zero-pressure volume change associated with the ilmenite-perovskite phase transition in MnGeO3 is ?6.6%. Mn2GeO4 disproportionates into a mixture of the perovskite phase of MnGeO3 plus the rocksalt phase of MnO at P = 250kbar and T = 1400–1800°C. The concept of utilizing germanates as high-pressure models for silicates is valid in general. The results of this study support the previous conclusion that the lower mantle comprises predominantly the orthorhombic perovskite phase of ferromagnesian silicate.  相似文献   

9.
CO2 has been investigated up to 514 kbar at23 ± 2°C by both optical and in situ X-ray diffraction studies using a diamond-anvil pressure cell. CO2 solidifies in an unknown structure in the pressure range 5 to 23 kbar, and transforms to ordinary dry-ice structure above 23 kbar at room temperature. Isothermal compression data for dry ice have been obtained above about 24 kbar. These appear to be the first data at room temperature known in the literature. The data fitted to the Birch equation of state yieldK0 = 29.3 ± 1.0kbar andK0 = 7.8 assuming the volume of the hypothetical dry ice at zero-pressure and room temperature is 31.4 ± 0.2 cm3/mole. The isothermal bulk modulus(K0) thus derived is consistent with the compression data and compressibilities for dry ice obtained at low temperatures using dilatometry and ultrasonic techniques, respectively, reported in the literature. By comparing shock-wave data for relevant materials, it is suggested that CO2 is not likely to transform to one of the crystalline forms of SiO2 which is otherwise expected from empirical grounds, but may instead decompose into C (diamond) + O2, at high pressures.  相似文献   

10.
Viscosity of anhydrous albite melt, determined by the falling-sphere method in the solid-media, piston-cylinder apparatus, decreases with increasing pressure from 1.13 × 105 P at 1 atm to 1.8 × 104 P at 20 kbar at 1400°C. The rate of decrease in viscosity is larger between 12 and 15 kbar than in other pressure ranges examined. The density of the quenched albite melt increases with increasing pressure of quenching from 2.38 g/cm3 at 1 atm to 2.53 g/cm3 at 20 kbar. The rate of increase in density is largest at pressures between 15 and 20 kbar. The melting curve of albite shows an inflexion at about 16 kbar. These observations strongly suggest that structural changes of albite melt would take place effectively at pressures near 15 kbar. Melt of jadeite (NaAlSi2O6) composition shows very similar changes in viscosity and density and a melting curve inflexion at pressures near 10 kbar. Difference in pressure for the suggested effective structural changes of albite and jadeite melts is 5–6 kbar, which is nearly the same as that between the subsolidus reaction curves nepheline + albite= 2jadeite and albite=jadeite + quartz. The structural changes of the melts are, however, continuous and begin to take place at pressures lower than those of the crystalline phases.  相似文献   

11.
12.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

13.
Evapotranspiration (LE) is an important factor for monitoring crops, water requirements, and water consumption at local and regional scale. In this paper, we applied the semi-empirical model to estimate the daily latent heat flux (LEd = Rnd + A  B(Ts  Ta)). LEd has been estimated using satellite images (Thematic Mapper sensor) and a local dataset (incoming and outgoing short- and long-wave radiation) measured during three years. We first estimated the daily net Radiation (Rnd) from a linear equation derived from the instantaneous net Radiation (Rnd = CRni + D). Subsequently, coefficients A and B have been estimated for two different cover vegetations (pasture and soybean). For each vegetation cover, an error analysis combining Rnd, A, B, and surface and air temperatures has been calculated. Results showed that Rnd had good performance (nonbias and low RMSE). LEd errors for pasture and soybean were ±28 W m−2 and ±40 W m−2 respectively.  相似文献   

14.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

15.
Nickel partitioning between forsterite and aluminosilicate melt of fixed bulk composition has been determined at 1300°C to 20 kbar pressure. The value of the forsterite-liquid nickel partition coefficient is lowered from >20 at pressures equal to or less than 15 kbar to <10 at pressures above 15 kbar.Published data indicate that melts on the join Na2O-Al2O3-SiO2 become depolymerized in the pressure range 10–20 kbar as a result of Al shifting from four-coordination at low pressure to higher coordination as the pressure is increased. This coordination shift results in a decreasing number of bridging oxygens in the melt. It is suggested that the activity coefficient of nickel decreases with this decrease in the number of bridging oxygens. As a result, the nickel partition coefficient for olivine and liquid is lowered.Magma genesis in the upper mantle occurs in the pressure range where the suggested change in aluminum coordination occurs in silicate melts. It is suggested, therefore, that data on nickel partitioning obtained at low pressure are not applicable to calculation of the nickel distribution between crystals and melts during partial melting in the upper mantle. Application of high-pressure experimental data determined here for Al-rich melts to the partial melting process indicates that the melts would contain about twice as much nickel as indicated by the data for the low-pressure experiments. If, as suggested here, the polymerization with pressure is related to the Al content of the melt, the difference in the crystal-liquid partition coefficient for nickel at low and high pressure is reduced with decreasing Al content of the melt. Consequently, the change ofDNiol-andesite melt is greater than that ofDNiol-basalt melt, for example.  相似文献   

16.
The enthalpies of formation from the oxides of Mg2SnO4 and Co2SnO4 were found by oxide melt solution calorimetry to be +1.13 ± 0.48 kcal/mol and ?2.31 ± 0.28 kcal/mol, respectively. Using these data, the slopes, ?P/?T, for disproportionation of these spinels to the component oxides at high pressure were calculated to be +30.4 ± 4.2 bar/K for Mg2SnO4 and ?10.3 ± 2.4 bar/K for Co2SnO4, in general agreement with the data of Jackson et al. (1974a,b). Using thermochemical data for the formation of olivines, for olivine-spinel transitions and for the transformation of quartz to stishovite, we calculate pressures for the disproportionation of silicate spinels to be in the range 150–200 kbar. Calculated slopes ?P/?T for the disproportionation reactions are ?10.7, ?24.9, ?11.2, and +7.6 bar/K for Mg2SiO4, Fe2SiO4, Co2SiO4, and Ni2SiO4. The large negative slope calculated for Fe2SiO4 results from a surprisingly large positive slope reported for the olivine-spinel transition in that compound (Akimoto et al., 1969). Further consideration of the systematic trends in the thermodynamics of spinel formation from the oxides suggests that the silicate spinels should have entropies of formation close to zero, resulting in values of ?P/?T which are zero or at most only slightly negative. This confirms the conclusion of Jackson, Liebermann, and Ringwood that values of ?P/?T for spinel disproportionation are unlikely to be more negative than ?10 bar/K and may well be slightly positive. Reaction of spinels to form other post-spinel phases, particularly ilmenite and perovskite, are discussed in terms of available thermochemical data.  相似文献   

17.
Phase assemblages for five selected compositions in the system CaSiO3-Al2O3 have been investigated in the pressure range 100–300 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. At pressures below about 250 kbar, the assemblage of grossularite plus corundum is stable for compositions containing more than 25 mole% Al2O3. Above about 250 kbar, phase assemblages for the latter compositions are truncated by those in the join CaAl2O4-SiO2. Garnet solid solutions are stable between about 10 and 25 mole% Al2O3. Grossularite transforms to a new tetragonal form at pressures greater than about 250 kbar, but the stability field for the garnet solid solutions extends to pressures up to about 300 kbar. The perovskite modification appears to be stable at pressures above about 150 kbar, but is probably limited to nearly pure CaSiO3 composition. Phase behaviour for calcium-bearing silicates or aluminosilicates in the lower mantle are apparently more complicated than was suggested earlier.  相似文献   

18.
The solubility of fluorapatite in a wide variety of basic magmatic liquids was experimentally determined over a range of upper mantle P-T conditions (8–25 kbar, 1275–1350°C). Fluorapatite is stable over the entire range of conditions investigated, but its solubility in melts is variable, depending negatively on SiO2 content of the melt and positively upon temperature, with relatively little sensitivity to pressure above 8 kbar. At upper mantle pressures and a temperature of 1250°C, molten basalt (50% SiO2) will dissolve 3–4 wt.% P2O5 before saturation in apatite is reached. For a magma 100°C cooler or containing 10 wt.% more SiO2, apatite saturation occurs at less than 2 wt.% dissolved P2O5. The observed high solubility of apatite in basic magmas at their normal near-liquidus temperatures virtually precludes the occurrence of residual apatite in mantle source regions. If relatively low-temperature melting conditions prevail (e.g., 1100°C), as might be possible in H2O-bearing regions of the upper mantle, apatite could remain in the residue, but only in amounts too small to have significant effects on the rare earth patterns of the liquids.Because of the high solubility of apatite in basic magmas, phosphorus can be confidently treated as an incompatible element in peridotite melting models. Such models, in combination with observed characteristics of basic lavas, indicate that the upper mantle contains ~200 ppm of phosphorus, much less than the chondritic abundance of ~900 ppm.  相似文献   

19.
Both amorphous and crystalline (rutile) forms of MnO2 have been subjected to loading pressures of 220 and 250 kbar and heated by a laser to approximately 1000°C in a diamond-anvil press. In all runs, X-ray diffraction study of the quenched sample reveals a mixture of pyrolusite (the rutile form of MnO2) plus an unknown phase. This phase has been tentatively indexed on the basis of a large cubic cell with lattice parameter a0 = 9.868 ± 0.011Å. Shock-wave data for MnO2 up to 1300 kbar indicate that any phase transformation must involve only a small volume change. If the high-pressure phase is the cubic phase of this paper, then the latter has 36 formula units per unit cell, implying a zero-pressure volume change of 3.2% from the rutile to cubic phase. The cubic phase may provide an alternative model for the high-pressure phase of oxides having the rutile structure.  相似文献   

20.
Ultrasonic data for the velocities of a large number of perovskite-structure compounds have been determined as a a function of pressure to 6 kbar at room temperature for polycrystalline specimens hot-pressed at pressures up to 100 kbar in solid-media devices: ScAlO3, GdAlO3, SmAlO3, EuAlO3, YAlO3, CdTiO3, CdSnO3, CaSnO3 and CaGeO3. The elasticity data for these orthorhombic and cubic perovskites define systematic patterns on bulk modulus (KS)-volume (VO) and bulk sound velocity (υφ—mean atomic weight (M) diagrams which are insensitiv to the details of cation chemistry and crystallographic structure. These isostructural trends are used to estimate KS = 2.5 ± 0.3 Mbar and υφ = 7.9 ± 0.4 km/s for the perovskite polymorph of MgSiO3. On a Birch diagram of veloc vs. density, the perovskite data define linear trends which lead to erroneous estimates of velocity for MgSiO3 unless specific account is taken of ionic radius effects in isomorphic substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号