首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   

2.
Abstract

Two topographically similar adjacent catchments near Johannesburg, South Africa, one suburban, the other natural grassland, were monitored over a five year period to detect differences in runoff and hydrological balance. A network of raingauges, boreholes, flow gauges and water meters was installed. Evapotranspiration was modelled using observed weather data. Groundwater was estimated from tracer and other borehole tests. Surface runoff from the undeveloped and suburban catchments was 4% and 15% of rainfall respectively. Evapotranspiration was 63% of rainfall for both catchments. Sewage outflow was 83% of water consumption for the suburban catchment. Little change in water table level occurred in the suburban catchment, and garden watering probably balanced the high evaporation. Piped water supply was 16% of the precipitation on the catchment.  相似文献   

3.
Uruguay has stimulated the development of its forest sector since the promulgation of Forest Law N° 15 939 in December of 1987. Nevertheless, the substitution of natural grasslands with forest plantations for industrial use has raised concerns regarding hydrological processes of groundwater recharge and water consumption involving evapotranspiration. The purpose of this study is to assess the effects of this substitution approach on water resources. Input data were collected from two small experimental watersheds of roughly 100–200 hectares located in western Uruguay. The watersheds are characterized by Eucalyptus Globulus ssp. Maidenni and natural grasslands for cattle use. Total rainfall, stream discharge, rainfall redistribution, soil water content and groundwater level data were collected. Groundwater recharge was estimated from water table fluctuations and from groundwater contributions to base flows. Seasonal and annual water budgets were computed from October of 2006 to September of 2014 to evaluate changes in the hydrological processes. The data show a decrease in annual specific discharge of roughly 17% for mean hydrological years and no conclusive effects on annual groundwater recharge in the forested watershed relative to the reference pasture watershed. Reduced annual specific discharge is equivalent to the mean annual interception. The computed actual annual evapotranspiration is consistent with international catchment measurements. Reduction rates vary seasonally and according to accumulated rainfall and its temporary distribution. The degree of specific discharge decline is particularly high for drier autumns and winters (32 to 28%) when the corresponding rainfall varies from 275 to 400 mm. These results are of relevance for water resources management efforts, as water uses downstream can be affected. These findings, based on a study period dominated by anomalous wet springs and summers and by dry autumns and winters, oppose earlier results based on 34 years of rainfall and discharge data drawn from Uruguayan large basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A study of the interaction between groundwater and surface water was undertaken within a small agricultural watershed in southern Ontario, Canada. Groundwater contributions to streamflow were measured along a section of stream during baseflow conditions and during rainfall events. Four techniques were used to estimate the contribution of groundwater to the stream along a 450 m reach (three during baseflow and one during stormflow conditions). Under baseflow conditions, streamflow measurements using the velocity–area technique indicated that the net groundwater flux to the stream during the summer months was 10 ml s−1 m−1. Hydrometric measurements (i.e. hydraulic gradient and hydraulic conductivity) taken using mini-piezometers installed in the sediments beneath the stream resulted in net groundwater flux estimates that were four to five times lower. Seepage meters failed to provide any measurements of water flux into or out of the stream. Therefore, based on these results, the velocity–area technique gives the best estimate of groundwater discharge. Hydrograph separations were conducted using isotopic ratios and electrical conductivity on two large rainfall events with different antecedent moisture conditions in the catchment. Both events showed that pre-event water (generally considered groundwater) dominated streamflow and tile drain flow with 64%–80% of the total discharge contributed by pre-event water. High water table conditions within the catchment resulted in greater stream discharge and a greater contribution of event water in the streamflow than that observed under low water table conditions for similar intensity storm events. The results also showed that differences in riparian zone width, vegetation and surface saturation conditions between the upper and lower catchment can influence the relative magnitude of streamflow response from the two catchment areas.  相似文献   

5.
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi‐site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi‐arid lower parts of the catchment, with some areas showing around 60 m depletion over a period of eight years. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.  相似文献   

7.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In the cold semiarid Canadian prairies, groundwater recharge is focussed under numerous topographic depressions, in which snowmelt runoff converges. Agricultural land uses on the uplands surrounding the depressions affect snow accumulation, snowmelt infiltration, evapotranspiration (ET) and soil moisture dynamics, thereby influencing snowmelt runoff and depression-focussed recharge. The objective of this study is to compare the differences in hydrological processes under two common land uses in the Canadian prairies, namely grazed grass and annual crop, and examine how they affect groundwater recharge. A short-term (3 years) paired catchment study was used for detailed observation of hydrological processes in two depressions, supplemented by a longer-term (17 years) data set covering a larger scale to quantify the differences in snowmelt runoff between the two land uses. Compared to the grazed grassland, the cropland had a shorter and more intense period of ET, and root water uptake restricted to the shallower (top 0–80 cm) soil zone. The amount of snowmelt runoff was greater in the grazed grassland primarily due to a higher amount of snow accumulation, which was dictated by differences in topography. This finding was contrary to previous studies in the Canadian prairies that indicated substantially smaller snowmelt runoff in ungrazed grassland, but was consistent with the larger-scale remote sensing results, which showed only a marginal difference between grazed grasslands and croplands. Groundwater recharge rates were estimated using the chloride mass balance method for the present condition using “modern” pore water containing tritium. The rates were similar between the grazed grassland and croplands, implying similarity in snowmelt runoff characteristics. These results suggest that groundwater recharge will continue to be focussed under depressions in the future, though the amount and seasonality of recharge may be influenced by warmer winters.  相似文献   

9.
Our understanding of how groundwater mediates evapotranspiration/streamflow partitioning is still fragmented and catchment studies under changing vegetation conditions can provide a useful frame for integration. We explored this partition in a flat sedimentary dry catchment in central Argentina in which the replacement of native vegetation with rainfed crops was accompanied by the abrupt formation of groundwater-fed streams by subsurface erosion (i.e., sapping) episodes. Historical records indicated widespread water table rises (~0.3 m y−1 on average). Groundwater level and stream baseflow fluctuated seasonally with minima in the warm rainy season, indicating that evaporative discharge rather than rainfall shapes saturated flows. Diurnal groundwater level fluctuations showed that plant uptake was widespread where water tables are shallow (<3 m) but restricted to deep-rooted Prosopis forests where they are deep (7–10 m). MODIS and LANDSAT NDVI revealed a long-term greening for native vegetation, new wetlands included, but not for croplands, suggesting more limited evapotranspiration-groundwater level regulation under agriculture. Close to the deepest (20 m) and most active incisions, groundwater level and greenness declined and stream baseflow showed no seasonal fluctuations, hinting decoupling from evapotranspiration. Intense ecological and geomorphological transformations in this catchment exposed the interplay of five mechanisms governing evapotranspiration/streamflow partition including (a) unsaturated uptake and both (b) riparian and (c) distributed uptake from the saturated zone by plants, as well as (d) deepening incisions and (e) sediment deposits over riparian zones by streams. Acknowledging the complex interplay of these mechanisms with groundwater is crucial to predict and manage future hydrological changes in the dry plains of South America.  相似文献   

10.
Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km2) and the Hosotani river (SR) catchment (4.0 km2) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 103 years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small‐scale hydrological conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates particulate phosphorus (PP) and soluble reactive phosphorus (SRP) concentrations at the outlet of a small (5 km²) intensively farmed catchment to identify seasonal variability of sources and transport pathways for these two phosphorus forms. The shape and direction of discharge‐concentration hystereses during floods were related to the hydrological conditions in the catchment during four hydrological periods. Both during flood events and on an annual basis, contrasting export dynamics highlighted a strong decoupling between SRP and PP export. During most flood events, discharge‐concentration hystereses for PP were clockwise, indicating mobilization of a source located within or near the stream channel. Seasonal variability of PP export was linked to the availability of stream sediments and the export capacity of the stream. In contrast, hysteresis shapes for SRP were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P‐rich soil horizons. SRP concentrations were the highest when the relative contribution of deep groundwater from the upland domain was low compared with wetland groundwater. Hence, soils from non‐fertilized riparian wetlands seemed to be the main source of SRP in the catchment. This conceptual model of P transfer with distinct hydrological controls for PP and SRP was valid throughout the year, except during spring storm events, during which PP and SRP exports were synchronized as a consequence of overland flow and erosion on hillslopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
TOPMODEL was calibrated to a small catchment using precipitation and runoff data. Acceptable fits of simulated and observed runoff were obtained during both the calibration and validation periods. Predictions of groundwater levels using this calibration did not agree well with observations at the 37 points within the catchment where groundwater levels were measured, including three locations with continuous recordings. Groundwater level observations at one single point in time, however, sufficed to calibrate new topographic–soil indices that improved the prediction of the local groundwater levels at the observed tubes. This suggests that spatially distributed calibration data are necessary to exploit reliably TOPMODEL's ability to predict spatially distributed hydrology. The mean or recalibrated transmissivity values at these 37 points differed from the catchment mean as determined by the precipitation–runoff calibration. Thus, while groundwater information can help in predicting groundwater levels at specific locations, increasing the number of local groundwater level measurements is not sufficient to improve the spatially distributed representation of subsurface flow by TOPMODEL for the catchment as a whole, as long as the groundwater information is not integrated in the precipitation–runoff calibration. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The increasing need for distributed hydrological modelling leads to an intense use of spatially distributed predictions of physically based models, such as TOPMODEL as addressed here. The ability of these models to reproduce the internal behaviour of catchments physically is increasingly tested through field experiments (geochemical investigation, distributed measurements network, etc.). This paper will show that, in the case of TOPMODEL, an implicit approximation remains in the classic derivation of the equations that consists in neglecting the surface of saturated areas with respect to the total surface of the catchment. This simplifying, though unnecessary, approximation leads to a systematic underestimation of the catchment water storage deficit and to divergence in the water budget accounting. This may also significantly change the predicted ratio between subsurface and surface water fluxes in the total discharge. An analytical solution is suggested that leads to water balance accounting which is better defined, and more consistent in comparison with field water storage recording. It is expected that this work will ensure more accurate TOPMODEL predictions, consistent with the assumptions of the model. This will then improve the interpretation of comparisons between results of simulation and field experiments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The hydrological model TOPMODEL is used to assess the water balance and describe flow paths for the 9·73 ha Lutz Creek Catchment in Central Panama. Monte Carlo results are evaluated based on their fit to the observed hydrograph, catchment‐averaged soil moisture and stream chemistry. TOPMODEL, with a direct‐flow mechanism that is intended to route water through rapid shallow‐soil flow, matched observed chemistry and discharge better than the basic version of TOPMODEL and provided a reasonable fit to observed soil moisture and wet‐season discharge at both 15‐min and daily time‐steps. The improvement of simulations with the implementation of a direct‐flow component indicates that a storm flow path not represented in the original version of TOPMODEL plays a primary role in the response of Lutz Creek Catchment. This flow path may be consistent with the active and abundant pipeflow that is observed or delayed saturation overland flow. The ‘best‐accepted’ simulations from 1991 to 1997 indicate that around 41% of precipitation becomes direct flow and around 10% is saturation overland flow. Other field observations are needed to constrain evaporative and groundwater losses in the model and to characterize chemical end‐members posited in this paper. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

17.
To improve understanding of DOC dynamics in seasonal Mediterranean environments, rainfall, soil water, groundwater and stream water samples were taken during a 27-month period in the Can Vila catchment (northeast Spain). Using these data, we characterized DOC dynamics in the different hydrological compartments and analysed the factors affecting them. We also analysed DOC dynamics during storm events and the factors that control DOC delivery to the stream. The results show some seasonality in rainwater and soil water DOC concentrations, while no clear seasonality was observed in stream water and groundwater, where DOC dynamics were strongly related to discharge and water table variations. For storm events with several discharge peaks, the slope of the discharge–DOC concentration relationship was higher for the first peak. The rather similar dynamics of stream water DOC concentration in all floods contrast with the observed diversity of hydrological processes. This raises the question of the origin of the observed rapid DOC increase.
EDITOR M.C. Acreman

ASSOCIATE EDITOR K. Heal  相似文献   

18.
Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics‐based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号