首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The problem of quantifying the effects of flexible plants on flow resistance and eddy viscosity by vegetated floodplains is first addressed with a one‐dimensional (1D) approximation based upon the so‐called lateral distribution method. The estimates so obtained are then tested with two‐dimensional (2D) numerical simulations based on the full shallow water equations through the use of the computational code Telemac‐2D. Data obtained on a physical model of the Besòs River (Spain), whose floodplains were covered with plastic ornamental plants to mimic the effect of flexible vegetation, is used for the validation of the numerical results. Additionally, the values of flow resistance estimated numerically with the 1D and 2D simulations are compared with values obtained in a rectangular flume under flow conditions (slope, water depth and artificial lining) similar to those used on the reduced model. It is then established that as more physical mechanisms are included in the mathematical model used to study the problem, the ratio between the floodplain and the main channel flow resistance coefficient increases. The approach demonstrates that whenever enough flow data is available, the lateral distribution method delivers values of flow resistance and eddy viscosity which are highly consistent with 2D numerical modelling. This finding could mean considerable savings in the burdensome task of specifying flow resistance and turbulence dissipation values for 2D modelling of large compound channel systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
V. Tayefi  S. N. Lane  R. J. Hardy  D. Yu 《水文研究》2007,21(23):3190-3202
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In the Amazon basin, floodplains form a complex mosaic of freshwater systems with differing morphologies, resulting in varied inundation patterns and heterogeneous chemical and ecological characteristics. In this study, we focused on the Janauacá floodplain, a medium‐sized system (786 km2, including the local watershed) located along the Solimões River. Based on in situ and satellite observations acquired from November 2006 to November 2011, we computed water fluxes between the mainstream and the floodplain and examined the temporal dynamics of floodplain storage from river flooding, rainfall, runoff, and exchanges with groundwater through bank seepage for the 5 years from 2006 to 2011. The mainstream was the main input of water to the flooded area, accounting on average for 93% of total water inputs by the end of the water year. Direct precipitation and runoff from uplands contributed less than or equal to 5% and 10%, respectively. The seepage contribution was less than 1%. Model uncertainties, evaluated using Monte Carlo analysis of the input data and model parameters, showed that all water fluxes were relatively well constrained except for outflow through seepage, which had a standard deviation across simulations greater than 60%. The water balance computation was verified using electrical conductivity as an assumed non‐reactive tracer. Except during periods of very low water, the simulated and measured conductivities agreed well. Moreover, conductivity data analysis confirmed that the Janauacá system can be considered homogeneous in terms of electrical conductivity for filling percentages equal to or greater than 40% (i.e., when the water level is above 19.5 m, generally from April to August) but presented large heterogeneities during the rest of the hydrological cycle.  相似文献   

9.
Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite‐derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin‐wide total water storage changes in the Amazon vary by approximately + /? 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /? 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Active deposition across the floodplains of large rivers arises through a variety of processes; collectively these are here termed ‘spillage sedimentation’. Three groups of 11 spillage sedimentation styles are identified and their formative processes described. Form presences on large river floodplains show different combinations of active spillage styles. Only some large floodplains have prominent levees; some have coarse splays; many have accessory channel dispersion and reworking, while still‐water sedimentation in lacustrine environments dominates some lower reaches. Infills are also commonly funnelled into prior, and often linear, negative relief forms relating to former migration within the mainstream channel belt. Shuttle Radar Topography Mission (SRTM) and Landsat 8 data are used to map spillage form types and coverage along a 1700 km reach of the Amazon that has an active floodplain width of up to 110 km with a systematic character transformation down‐valley. Spillage forms associated directly with mainstream processes rarely account for more than 5% of the floodplain deposits. There is a marked decrease in floodplain point bar complexes (PBC) over 1700 km downstream (from 34% to 5%), and an increase in the prevalence of large water bodies (2% to 37%) and accompanying internal crevasses and deltas (0% to 5%). Spillage sedimentation is likely within the negative relief associated with these forms, depending on mainstream sediment‐laden floodwater inputs. Spillage style dominance depends on the balance between sediment loadings, hydrological sequencing, and morphological opportunity. Down‐river form sequences are likely to follow gradient change, prior up‐river sediment sequestration and the altered nature of spilled loads, but also crucially, local floodplain relief and incident water levels and velocities at spillage times. Considering style distribution quantitatively, as a spatially distributed set of identifiable forms, emphasizes the global variety to spillage phenomena along and between large rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
The embanked floodplains of the lower River Rhine in the Netherlands contain large amounts of heavy metals, which is a result of many years deposition of contaminated overbank sediments. Depending on local sedimentation rates and changing pollution trends in the past, the metal pollution varies greatly between different floodplain sections as well as vertically within the floodplain soil profiles. Maximum metal concentrations in floodplain soils vary from 30 to 130 mg/kg for Cu, from 70 to 490 mg/kg for Pb and from 170 to 1450 mg/kg for Zn. In the present study these metals were used as a tracer to reconstruct sedimentation rates at 28 sites on the lower River Rhine floodplains. The temporal trend in pollution of the lower River Rhine over the past 150 years was reconstructed on the basis of metal concentrations in sediments from small ponds within the floodplain area. Using a one‐dimensional sedimentation model, average sedimentation rates over the past century were determined using an inverse modelling calibration procedure. The advantage of this method is that it uses information over an entire profile, it requires only a limited number of samples, it accounts for post‐depositional redistribution of the metals, and it provides quantitative estimates of the precision of the sedimentation rates obtained. Estimated sedimentation rates vary between about 0·2 mm/year and 15 mm/year. The lowest metal concentrations are found in the distal parts of floodplain sections with low flooding frequencies and where average sedimentation rates have been less than about 5 mm/year. The largest metal accumulations occur in low‐lying floodplain sections where average sedimentation rates have been more than 10 mm/year. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the impacts of new river geomorphic and flow parameterizations on the simulated surface waters dynamics of the Amazon River basin. Three major improvements to a hydrologic model are presented: (1) the river flow velocity equation is expanded to be dependent on river sinuosity and friction in addition to gradient forces; (2) equations defining the morphological characteristics of the river, such as river height, width and bankfull volume, are derived from 31 622 measurements of river morphology and applied within the model; (3) 1 km resolution topographic data from the Shuttle Radar Topography Mission (SRTM) are used to provide physically based fractional flooding of grid cells from a statistical representation of sub‐grid‐scale floodplain morphology. The discharge and floodplain inundation of the Amazon River is simulated for the period 1968–1998, validated against observations, and compared with results from a previous version of the model. These modifications result in considerable improvement in the simulations of the hydrological features of the Amazon River system. The major impact is that the average wet‐season flooded area on the Amazon mainstem for the period 1983–1988 is now within 5% of satellite‐derived estimates of flooded area, whereas the previous model overestimates the flooded area by about 80%. The improvements are a consequence of the new empirical river geomorphologic functions and the SRTM topography. The new formulation of the flow velocity equation results in increased river velocity on the mainstem and major tributaries and a better correlation between the mean monthly simulated and observed discharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
D. Yu  S. N. Lane 《水文研究》2006,20(7):1541-1565
High‐resolution data obtained from airborne remote sensing is increasing opportunities for representation of small‐scale structural elements (e.g. walls, buildings) in complex floodplain systems using two‐dimensional (2D) models of flood inundation. At the same time, 2D inundation models have been developed and shown to provide good predictions of flood inundation extent, with respect to both full solution of the depth‐averaged Navier–Stokes equations and simplified diffusion‐wave models. However, these models have yet to be applied extensively to urban areas. This paper applies a 2D raster‐based diffusion‐wave model to determine patterns of fluvial flood inundation in urban areas using high‐resolution topographic data and explores the effects of spatial resolution upon estimated inundation extent and flow routing process. Model response shows that even relatively small changes in model resolution have considerable effects on the predicted inundation extent and the timing of flood inundation. Timing sensitivity would be expected, given the relatively poor representation of inertial processes in a diffusion‐wave model. Sensitivity to inundation extent is more surprising, but is associated with: (1) the smoothing effect of mesh coarsening upon input topographical data; (2) poorer representation of both cell blockage and surface routing processes as the mesh is coarsened, where the flow routing is especially complex; and (3) the effects of (1) and (2) upon water levels and velocities, which in turn determine which parts of the floodplain the flow can actually travel to. It is shown that the combined effects of wetting and roughness parameters can compensate in part for a coarser mesh resolution. However, the coarser the resolution, the poorer the ability to control the inundation process, as these parameters not only affect the speed, but also the direction of wetting. Thus, high‐resolution data will need to be coupled to a more sophisticated representation of the inundation process in order to obtain effective predictions of flood inundation extent. This is explored in a companion paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Suspended‐sediment concentration data are a missing link in reconstructions of the River Waal in the early 1800s. These reconstructions serve as a basis for assessing the long‐term effects of major interventions carried out between 1850 AD and the early 20th century. We used a 2D physics‐based morphodynamic model accounting for the influence of floodplain vegetation to fill in this gap. Historical discharge hydrographs were derived from a correlation between flow discharge records at Cologne and water level measurements of the Rhine branches in the Netherlands, taking into account the discharge distribution between the branches. Historical floodplain sedimentation rates were estimated using old cartographic information and recent geomorphologic field work. The computed historical sedimentation rates are found to be within the range of measured data, which suggests that fine suspended sediment concentrations in the early 1800s were comparable to contemporary ones. The computations show also how vegetation enhances the formation of natural levees close to the main channel and at the same time decreases the sedimentation rates in farther areas of the floodplain. A sensitivity analysis shows suspended sediment composition to have a strong influence on the resulting quantities and patterns of floodplain deposition. The reconstruction has also provided validation of the modelling tools to reproduce the effects of vegetation on sediment dynamics, enabling their implementation to study other cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time‐variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM‐ETH‐I with the three‐dimensional finite‐difference‐based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain‐dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号