首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effect of forest litter on snow surface albedo has been subject to limited study, mainly in the hardwood‐dominated forests of the northeastern United States. Given the recent pine beetle infestation in Western North America and associated increases in litter production, this study examines the effects of forest litter on snow surface albedo in the coniferous forests of south‐central British Columbia. Measured changes in canopy transmittance provide an indication of canopy loss or total litterfall over the winter of 2007–2008. Relationships between percent litter cover, an index of albedo, snow depth, and snow ablation during the 2008 melt season are compared between a mature, young, and clearcut coniferous stand. Results indicate a strong feedback effect between canopy loss and subsequent enhanced shortwave transmittance, and litter accumulation on the snow surface from that canopy loss. However, this relationship is confounded by other variables concurrently affecting albedo. While results suggest that a relatively small percent litter cover can have a significant effect on albedo and ablation, further research is underway to extract the litter signal from that of other factors affecting albedo, particularly snow depth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Mountain snowpacks provide most of the annual discharge of western US rivers, but the future of water resources in the western USA is tenuous, as climatic changes have resulted in earlier spring melts that have exacerbated summer droughts. Compounding changes to the physical environment are biotic disturbances including that of the mountain pine beetle (MPB), which has decimated millions of acres of western North American forests. At the watershed scale, MPB disturbance increases the peak hydrograph, and at the stand scale, the ‘grey’ phase of MPB canopy disturbance decreases canopy snow interception, increases snow albedo, increases net shortwave radiation, and decreases net longwave radiation versus the ‘red’ phase. Fewer studies have been conducted on the red phase of MPB disturbance and in the mixed coniferous stands that may follow MPB‐damaged forests. We measured the energy balance of four snowpacks representing different stages of MPB damage, management, and recovery: a lodgepole pine stand, an MPB‐infested stand in the red phase, a mixed coniferous stand (representing one successional trajectory), and a clear‐cut (representing reactive management) in the Tenderfoot Creek Experimental Forest in Montana, USA. Net longwave radiation was lower in the MPB‐infested stand despite higher basal area and plant area index of the other forests, suggesting that the desiccated needles serve as a less effective thermal buffer against longwave radiative losses. Eddy covariance observations of sensible and latent heat flux indicate that they are of similar but opposite magnitude, on the order of 20 MJ m?2 during the melt period. Further analyses reveal that net turbulent energy fluxes were near zero because of the temperature and atmospheric vapour pressure encountered during the melt period. Future research should place snow science in the context of forest succession and management and address important uncertainties regarding the timing and magnitude of needlefall events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Leaf area index (LAI) and canopy coverage are important parameters when modelling snow process in coniferous forests, controlling interception and transmitting radiation. Estimates of LAI and sky view factor show large variability depending on the estimation method used, and it is not clear how this is reflected in the calculated snow processes beneath the canopy. In this study, the winter LAI and sky view fraction were estimated using different optical and biomass‐based approximations in several boreal coniferous forest stands in Fennoscandia with different stand density, age and site latitude. The biomass‐based estimate of LAI derived from forest inventory data was close to the values derived from the optical measurements at most sites, suggesting that forest inventory data can be used as input to snow hydrological modelling. Heterogeneity of tree species and site fertility, as well as edge effects between different forest compartments, caused differences in the LAI estimates at some sites. A snow energy and mass balance model (SNOWPACK) was applied to detect how the differences in the estimated values of the winter LAI and sky view fraction were reflected in simulated snow processes. In the simulations, an increase in LAI and a decrease in sky view fraction changed the snow surface energy balance by decreasing shortwave radiation input and increasing longwave radiation input. Changes in LAI and sky view fraction affected directly snow accumulation through altered throughfall fraction and indirectly snowmelt through the changed surface energy balance. Changes in LAI and sky view fraction had a greater impact on mean incoming radiation beneath the canopy than on other energy fluxes. Snowmelt was affected more than snow accumulation. The effect of canopy parameters on evaporation loss from intercepted snow was comparable with the effect of variation in governing meteorological variables such as precipitation intensity and air temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Snow accumulation in mountain headwater basins is a major water source, particularly in semi‐arid environments such as southern Alberta where water resources are stressed and snowmelt supplies more than 80% of downstream runoff. Relationships between landscape predictor variables and snow water equivalent (SWE) were quantified by combining field and LiDar measurements with classification and regression tree analysis over two winter seasons (2010 and 2011) in a small, montane watershed. 2010 was a below average snow accumulation year, while 2011 was well above normal. In both the field and regression tree data, elevation was the dominant control on snow distribution in both years, although snow distribution was driven by melt processes in 2010 and accumulation processes in 2011. The importance of solar radiation and wind exposure was represented in the regression trees in both years. The regression trees also noted the lower importance of canopy closure, slope, and aspect, which was not observed in the field data. This technique could provide an additional method of forecasting annual water supply from melting snow. However, further research is required to address the lack of data collected above treeline, to provide a full‐basin estimate of SWE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Snow in the McMurdo Dry Valleys is a potential source of moisture for subnivian soils in a cold desert ecosystem. In a water‐limited environment, enhanced soil moisture is expected to provide more favourable conditions for subnivian soil communities. In addition, snow cover insulates the underlying soil from air temperature extremes. Quantifying the spatial and temporal patterns of seasonal snow accumulation and ablation is necessary to understand these dynamics. Repeat high‐resolution imagery acquired for the 2009–2010 austral summer was used to map the seasonal distribution of snow across Taylor and Wright valleys, Southern Victorialand, Antarctica. An edge detection algorithm was used to perform an object‐based classification of snow‐covered area. Coupled with topographic parameters obtained from a 30‐m digital elevation model, unique distribution patterns were characterized for five regions within the neighbouring valleys. Time lapses of snow distribution in each region provide insight into spatially variable aerial ablation rates (change in area of landscape covered by snow) across the region. A strong coastal to interior gradient of decreasing snow‐covered area was evident for both Taylor and Wright valleys. The surrounding regions of Lake Fryxell, Lake Hoare, Lake Bonney, Lake Brownworth, and Lake Vanda exhibited losses of snow‐covered area of 9.61 km2 (?93%), 1.63 km2 (?72%), 1.07 km2 (?97%), 2.60 km2 (?82%), and 0.25 km2 (?96%), respectively, as measured from peak accumulation in October to mid‐January. Differences in aerial ablation rates within and across local regions suggest that both topographic variation and regional microclimates influence the ablation of seasonal snow cover. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Over the past decade, British Columbia (BC), has experienced the largest mountain pine beetle (MPB) outbreak on record. This study used the eddy‐covariance (EC) technique to examine the impact of the MPB attack on evapotranspiration (E) and associated canopy characteristics of two lodgepole pine stands with secondary structure (trees, saplings and seedlings surviving the attack) located in central BC. MPB‐06, an 85‐year‐old almost pure stand of pine trees, was first attacked in 2006, and by 2010, ~80% of the trees had been killed. MPB‐03, a 110‐year‐old stand with an overstory consisting of over 90% pine and a developed sub‐canopy, was first attacked in 2003 and by 2007 had > 95% pine canopy mortality. EC measurements began in August 2006 at MPB‐06 and in March 2007 at MPB‐03, and continued for four years. Annual total E ranged from 226 mm to 237 mm at MPB‐06, and from 280 to 297 mm at MPB‐03, showing relatively little year‐to‐year change at both sites over the four years. Increased E from the accelerated growth of the surviving vegetation (secondary structure, shrubs and herbs) compensated for reduction in E due to the death of the overstory. Monthly average daytime canopy conductance, the Priestley–Taylor (α), and the canopy–atmosphere decoupling coefficient (Ω) steadily increased during the growing season reaching approximate maximum values of 5 mm s?1, 0.75 and 0.12, respectively. Potential evapotranspiration was approximated using a vapour pressure deficit‐dependent α obtained at high soil water content. Calculated water deficits indicated some water‐supply limitation to the surviving trees and understory at both sites. Rates of root zone drainage during the growing season were low relative to precipitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of trees on the ground thermal regime is important to the overall winter energy exchange in a snow-covered, forested watershed. In this work, spatial zones around a single conifer tree were defined and examined for their controls on the snow cover, snow-ground interface temperatures and frozen ground extent. A large white spruce (Picea glauca), approximately 18 m tall with a crown diameter of 7.5 m and located in northern Vermont, was the subject of this study. The tree was instrumented with thermistors to measure the snow-ground interface temperature between the tree trunk and 6 m from the tree into undisturbed snow. Four distinct zones around the conifer are defined that affect the snow distribution characteristics: adjacent to the trunk; the tree well; the tree crown perimeter; and the unaffected area away from the tree. At the time of peak snow accumulation and during the ablation season, snow depth and density profiles were measured. The area beneath the canopy accumulated 34% of the snow accumulated in the undisturbed zone. By the end of the ablation season, the depth of snow under the canopy had decreased to 18% of the undisturbed snow depth. The tree and branch characteristics of spruce in this temperate climate resulted in a different snow depth profile compared with previous empirical relationships around a single conifer. A new relationship is presented for snow distribution around conifer trees that has the ability to better fit data from a variety of conifer types than previously published relationships. Less snow beneath the canopy led to colder snow-ground interface temperatures than measured in undisturbed snow. The depth of frozen ground in the different zones was modelled using a simple analytical solution that showed deeper frost penetration in the tree well than beneath the undisturbed snow.  相似文献   

9.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Forests modify snow processes and affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate and topography and are therefore subject to temporal and spatial variability. We utilize multiple years of snow observations from across the Pacific Northwest, United States, to assess forest–snow interactions in the relatively warm winter conditions characteristic of maritime and transitional maritime–continental climates. We (a) quantify the difference in snow magnitude and disappearance timing between forests and open areas and (b) assess how forest modifications of snow accumulation and ablation combine to determine whether snow disappears later in the forest or in the open. We find that snow disappearance timing at 12 (out of 14) sites ranges from synchronous in the forest and open to snow persisting up to 13 weeks longer in the open relative to a forested area. By analyzing accumulation and ablation rates up to the day when snow first disappears from the forest, we find that the difference between accumulation rates in the open and forest is larger than the difference between ablation rates. Thus, canopy snow interception and subsequent loss, rather than ablation, set up longer snow duration in the open. However, at two relatively windy sites (hourly average wind speeds up to 8 and 17 m/s), differential snow disappearance timing is reversed: Snow persists 2–5 weeks longer in the forest. At the windiest sites, accumulation rates in the forest and open are similar. Ablation rates are higher in the open, but the difference between ablation rates in the forest and open at these sites is approximately equivalent to the difference at less windy sites. Thus, longer snow retention in the forest at the windiest sites is controlled by depositional differences rather than by reduced ablation rates. These findings suggest that improved quantification of forest effects on snow accumulation processes is needed to accurately predict the effect of forest management or natural disturbance on snow water resources.  相似文献   

12.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   

13.
The hydrology of boreal regions is strongly influenced by seasonal snow accumulation and melt. In this study, we compare simulations of snow water equivalent (SWE) and streamflow by using the hydrological model HYDROTEL with two contrasting approaches for snow modelling: a mixed degree‐day/energy balance model (small number of inputs, but several calibration parameters needed) and the thermodynamic model CROCUS (large number of inputs, but no calibration parameter needed). The study site, in Northern Quebec, Canada was equipped with a ground‐based gamma ray sensor measuring the SWE continuously for 5 years in a small forest clearing. The first simulation of CROCUS showed a tendency to underestimate SWE, attributable to bias in the meteorological inputs. We found that it was appropriate to use a threshold of 2 °C to separate rain and snow. We also applied a correction to account for snowfall undercatch by the precipitation gauge. After these modifications to the input dataset, we noticed that CROCUS clearly overestimated the SWE, likely as a result of not including loss in SWE because of blowing snow sublimation and relocation. To correct this, we included into CROCUS a simple parameterisation effective after a certain wind speed threshold, after which the thermodynamic model performed much better than the traditional mixed degree‐day/energy balance model. HYDROTEL was then used to simulate streamflow with both snow models. With CROCUS, the main peak flow could be captured, but the second peak because of delayed snowmelt from forested areas could not be reproduced due to a lack of sub‐canopy radiation data to feed CROCUS. Despite the relative homogeneity of the boreal landscape, data inputs from each land cover type are needed to generate satisfying simulation of the spring runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Native Nothofagus forests in the midlatitude region of the Andes Cordillera are notorious biodiversity hot spots, uniquely situated in the Southern Hemisphere such that they develop in snow‐dominated reaches of this mountain range. Spanning a smaller surface area than similar ecosystems, where forests and snow coexist in the Northern Hemisphere, the interaction between vegetation and snow processes in this ecotone has received lesser attention. We present the first systematic study of snow–vegetation interactions in the Nothofagus forests of the Southern Andes, focusing on how the interplay between interception and climate determines patterns of snow water equivalent (SWE) variability. The Valle Hermoso experimental catchment, located in the Nevados de Chillán vicinity, was fitted with eight snow depth sensors that provided continuous measurements at varying elevations, aspect, and forest cover. Also, manual measurements of snow properties were obtained during snow surveys conducted during end of winter and spring seasons for 3 years, between 2015 and 2017. Each year was characterized by distinct climatological conditions, with 2016 representing one of the driest winters on record in this region. Distance to canopy, leaf area index, and total gap area were measured at each observational site. A regression model was built on the basis of statistical analysis of local parameters to model snow interception in this kind of forest. We find that interception implied a 23.2% reduction in snow accumulation in forested sites compared with clearings. The interception in these deciduous trees represents, on average, 23.6% of total annual snowfall, reaching a maximum measured interception value of 13.8‐mm SWE for all snowfall events analysed in this research.  相似文献   

15.
We analyse spatial variability and different evolution patterns of snowpack in a mixed beech–fir stand in the central Pyrenees. Snow depth and density were surveyed weekly along six transects of contrasting forest cover during a complete accumulation and melting season; we also surveyed a sector unaffected by canopy cover. Forest density was measured using the sky view factor (SVF) obtained from digital hemispherical photographs. During periods of snow accumulation and melting, noticeable differences in snow depth and density were found between the open site and those areas covered by forest canopy. Principal component analysis provided valuable information in explaining these observations. The results indicate a high variability in snow accumulation within forest areas related to differences in canopy density. Maximum snow water equivalent (SWE) was reduced by more than 50% beneath dense canopies compared with clearings, and this difference increased during the melting period. We also found significant temporal variations: when melting began in sectors with low SVF, most of the snow had already thawed in areas with high SVF. However, specific conditions occasionally produced a different response of SWE to forest cover, with lower melting rates observed beneath dense canopies. The high values of correlation coefficients for SWE and SVF (r > 0·9) indicate the reliability of predicting the spatial distribution of SWE in forests when only a moderate number of observations are available. Digital hemispherical photographs provide an appropriate tool for this type of analysis, especially for zenith angles in the range 35–55 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial and temporal distribution of snow accumulation is complex and significantly influences the hydrological characteristics of mountain catchments. Many snow redistribution processes, such as avalanching, slushflow or wind drift, are controlled by topography, but their modelling remains challenging. In situ measurements of snow accumulation are laborious and generally have a coarse spatial or temporal resolution. In this respect, time‐lapse photography shows itself as a powerful tool for collecting information at relatively low cost and without the need for direct field access. In this paper, the snow accumulation distribution of an Alpine catchment is inferred by adjusting a simple snow accumulation model combined with a temperature index melt model to match the modelled melt‐out pattern evolution to the pattern monitored during an ablation season through terrestrial oblique photography. The comparison of the resulting end‐of‐winter snow water equivalent distribution with direct measurements shows that the achieved accuracy is comparable with that obtained with an inverse distance interpolation of the point measurements. On average over the ablation season, the observed melt‐out pattern can be reproduced correctly in 93% of the area visible from the fixed camera. The relations between inferred snow accumulation distribution and topographic variables indicate large scatter. However, a significant correlation with local slope is found and terrain curvature is detected as a factor limiting the maximal snow accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Heng Lu  Ming‐Zhe Liu  Xi Han 《水文研究》2017,31(8):1602-1612
Forest litter exerts an impact on the energy budget of snow surfaces, which lie beneath forest canopies. In this study, we measured shortwave and longwave radiation levels, as well as quantities of Asian spruce (Picea schrenkinan ) forest litter, over 3 snow study plots that representing an open environment, 20% forest canopy openness (20% FCO), and 80% forest canopy openness (80% FCO). The fractional litter coverage (lc ) was obtained through the binarization of digital photographs of forest litter. The effects of forest litter on snow surface albedo (α ), snow surface temperature (T s ), upward shortwave and longwave radiation (K and L ), and sensible heat flux (H ) were then analyzed. According to our results, the energy budget over snow surface influenced by forest litter principally due to forest litter forcing α decrease and T s increase. The effects of forest litter on the energy budget increased with time and lc . We found that forest litter exerted the most significant impact on K and L at daytime during the latter stages of the snowmelt period. The influence of forest litter on H was more apparent on windy days. The presence of forest litter increased gains in shortwave radiation and losses in longwave radiation and decreased gains in H . Compared to the simulated energy (K  + L  + H ) over a snow surface without litter, the calculated energy decreased by ?13.4 W/m2 and increased by 9.0 W/m2, respectively, at the 20% FCO and 80% FCO sites during the latter stages of the snowmelt period. Overall, forest litter facilitated snow surface energy gains at the 80% FCO site and impeded them at the 20% FCO site during the latter stages of the snowmelt period.  相似文献   

20.
Snow course measurements from 11 sites located in eastern and northern Finland were used to estimate the total interception evaporation of a winter season for different forest categories. We categorized the sites based on forest density and tree species. Results showed that interception loss from gross precipitation increased with forest density and approached 30% for a forest with the highest density class. Interception loss for the most common forest density class was 11%. Interception losses were slightly larger in spruce forests than in pine, deciduous, or mixed forests. We provide suggestions as to how to design snow surveys to estimate wintertime interception evaporation better. Rough terrain and transition zones between forest and open areas should be avoided. Since evaporation fraction was strongly dependent on tree crown characteristics, snow course data should include direct estimates of canopy closure. Qualitative observations made by different observers should be given a reference frame to ensure comparability of records from different sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号