首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil–meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil–meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M‐PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose‐zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M‐PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M‐PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M‐PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Western US forest ecosystems and downstream water supplies are reliant on seasonal snowmelt. Complex feedbacks govern forest–snow interactions in which forests influence the distribution of snow and the timing of snowmelt but are also sensitive to snow water availability. Notwithstanding, few studies have investigated the influence of forest structure on snow distribution, snowmelt and soil moisture response. Using a multi‐year record from co‐located observations of snow depth and soil moisture, we evaluated the influence of forest‐canopy position on snow accumulation and snow depth depletion, and associated controls on the timing of soil moisture response at Boulder Creek, Colorado, Jemez River Basin, New Mexico, and the Wolverton Basin, California. Forest‐canopy controls on snow accumulation led to 12–42 cm greater peak snow depths in open versus under‐canopy positions. Differences in accumulation and melt across sites resulted in earlier snow disappearance in open positions at Jemez and earlier snow disappearance in under‐canopy positions at Boulder and Wolverton sites. Irrespective of net snow accumulation, we found that peak annual soil moisture was nearly synchronous with the date of snow disappearance at all sites with an average deviation of 12, 3 and 22 days at Jemez, Boulder and Wolverton sites, respectively. Interestingly, sites in the Sierra Nevada showed peak soil moisture prior to snow disappearance at both our intensive study site and the nearby snow telemetry stations. Our results imply that the duration of soil water stress may increase as regional warming or forest disturbance lead to earlier snow disappearance and soil moisture recession in subalpine forests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Changes in hydrologic flowpaths have important impacts on the timing, magnitude and hydrochemistry of run‐off during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later because of climate change. In this study, we used end‐member mixing analysis to determine daily contributions of snow, forest floor soil water and groundwater to stream run‐off during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of run‐off through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared with the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow‐precipitation end‐member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Snowmelt energetics at a shrub tundra site in the western Canadian Arctic   总被引:1,自引:0,他引:1  
Snow accumulation and melt were observed at shrub tundra and tundra sites in the western Canadian Arctic. End of winter snow water equivalent (SWE) was higher at the shrub tundra site than the tundra site, but lower than total winter snowfall because snow was removed by blowing snow, and a component was also lost to sublimation. Removal of snow from the shrub site was larger than expected because the shrubs were bent over and covered by snow during much of the winter. Although SWE was higher at the shrub site, the snow disappeared at a similar time at both sites, suggesting enhanced melt at the shrub site. The Canadian Land Surface Scheme (CLASS) was used to explore the processes controlling this enhanced melt. The spring‐up of the shrubs during melt had a large effect on snowmelt energetics, with similar turbulent fluxes and radiation above the canopy at both sites before shrub emergence and after the snowmelt. However, when the shrubs were emerging, conditions were considerably different at the two sites. Above the shrub canopy, outgoing shortwave radiation was reduced, outgoing longwave radiation was increased, sensible heat flux was increased and latent flux was similar to that at the tundra site. Above the snow surface at this site, incoming shortwave radiation was reduced, incoming longwave radiation was increased and sensible heat flux was decreased. These differences were caused by the lower albedo of the shrubs, shading of the snow, increased longwave emission by the shrub stems and decreased wind speed below the shrub canopy. The overall result was increased snowmelt at the shrub site. Although this article details the impact of shrubs on snow accumulation and melt, and energy exchanges, additional research is required to consider the effect of shrub proliferation on both regional hydrology and climate. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada.  相似文献   

7.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
S. Pohl  P. Marsh 《水文研究》2006,20(8):1773-1792
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions.  相似文献   

10.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

12.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr?1 after one diurnal melt‐freeze‐cycle at ambient temperatures of ?2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr?1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (?2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.  相似文献   

13.
Snow water equivalent was measured during three springs on north‐ and south‐exposed sites representing a range of stand structure and development stages of Quebec's balsam fir forest. Maximum snow water equivalent of the season, mean seasonal snowmelt rate, snowmelt season duration and total snowmelt season degree‐day factor were related to canopy height, canopy density, light interception fraction and basal area of the stands using random coefficient models. Seasonal mean snowmelt rate was better explained by stand characteristics (R2 from 0·41 to 0·61) than was maximum snow water equivalent (R2 from 0·08 to 0·23). The best relationship was found with light interception, which explained 61% of snowmelt rate variability between stands. These relationships were not significantly affected by stand aspect (Pr ≥ S = 0·14 or higher), as snow dynamics seemed less dependent on aspect than on stand characteristics. Snowmelt recovery rates could be used by forest planners to establish an acceptable time step for the harvesting of different parts of a watershed in order to prevent peak flow augmentations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In the last two decades the major focus of study in forest water and carbon balances in eastern Siberia has been on the effect of rain during the growing season. Little attention has been paid to the contribution of snowmelt water. The results of the present study indicate that weather conditions during the snowmelt period as well as the soil moisture conditions carried from the previous year's growing season strongly determined the water availability for the forest ecosystem at the beginning of the next growing season. In the forest–grassland intermingled ecosystem of lowland Central Yakutia, gradual snowmelt water flow from the forest into the adjacent grassland depressions increased when soil moisture was high and air temperature was low, whereas low soil moisture and high air temperatures accelerated soil thawing and consequently snowmelt water infiltration into the forest soil. We found that snow depth did not determine the volume of snowmelt water moving to the grassland depression since the thermokarst lake water level in the adjacent grassland was about 25 cm lower in 2005 than in May 2006, even though maximum snow depth reached 57 cm and 43 cm in the winter of 2004–05 and 2005–06, respectively. The contribution of snowmelt water to forest growth as well as the flow of water from the forest to the grasslands showed a strong annual variability. We conclude that warmer springs and high variability in precipitation regimes as a result of climate change will result in more snowmelt water infiltration into the forest soil when the previous year's precipitation is low while more snowmelt water will flow into the thermokarst lake when the previous year's precipitation is high. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

This study examined the end-of-winter snow storage, its distribution and the spatial and temporal melt patterns of a large, low gradient wetland at Polar Bear Pass, Bathurst Island, Nunavut, Canada. The project utilized a combination of field observations and a physically-based snowmelt model. Topography and wind were the major controls on snow distribution in the region, and snow was routinely scoured from the hilltop regions and deposited into hillslopes and valleys. Timing and duration of snowmelt at Polar Bear Pass were similar in 2008 and 2009. The snowmelt was initiated by an increase in air temperature and net radiation receipt. Inter-annual variability in spatial snowmelt patterns was evident at Polar Bear Pass and was attributed to a non-uniform snow cover distribution and local microclimate conditions. In situ field studies and modelling remain important in High Arctic regions for assessing wetland water budgets and runoff, in addition to model parameterization and validation of satellite imagery.

Editor Z.W. Kundzewicz

Citation Assini, J. and Young, K.L., 2012. Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrological Sciences Journal, 57 (4), 738–755.  相似文献   

16.
High‐resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, nonlinear model to estimate 30‐year means of monthly snowpack and snowmelt throughout Oregon. Precipitation and temperature for the period 1971–2000, derived from 400‐m resolution PRISM data, and potential evapotranspiration (estimated from temperature and day length) drive the model. The model was calibrated using mean monthly data from 45 SNOTEL sites and accurately estimated snowpack at 25 validation sites: R2 = 0·76, Nash‐Sutcliffe Efficiency (NSE) = 0·80. Calibrating it with data from all 70 SNOTEL sites gave somewhat better results (R2 = 0·84, NSE = 0·85). We separately applied the model to SNOTEL stations located < 200 and ≥ 200 km from the Oregon coast, since they have different climatic conditions. The model performed equally well for both areas. We used the model to modify moisture surplus (precipitation minus potential evapotranspiration) to account for snowpack accumulation and snowmelt. The resulting values accurately reflect the shape and magnitude of runoff at a snow‐dominated basin, with low winter values and a June peak. Our findings suggest that the model is robust with respect to different climatic conditions, and that it can be used to estimate potential runoff in snow‐dominated basins. The model may allow high‐resolution, regional hydrologic comparisons to be made across basins that are differentially affected by snowpack, and may prove useful for investigating regional hydrologic response to climate change. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

17.
There is great interest in modelling the export of nitrogen (N) and phosphorus (P) from agricultural fields because of ongoing challenges of eutrophication. However, the use of existing hydrochemistry models can be problematic in cold regions because models frequently employ incomplete or conceptually incorrect representations of the dominant cold regions hydrological processes and are overparameterized, often with insufficient data for validation. Here, a process‐based N model, WINTRA, which is coupled to a physically based cold regions hydrological model, was expanded to simulate P and account for overwinter soil nutrient biochemical cycling. An inverse modelling approach, using this model with consideration of parameter equifinality, was applied to an intensively monitored agricultural basin in Manitoba, Canada, to help identify the main climate, soil, and anthropogenic controls on nutrient export. Consistent with observations, the model results suggest that snow water equivalent, melt rate, snow cover depletion rate, and contributing area for run‐off generation determine the opportunity time and surface area for run‐off–soil interaction. These physical controls have not been addressed in existing models. Results also show that the time lag between the start of snowmelt and the arrival of peak nutrient concentration in run‐off increased with decreasing antecedent soil moisture content, highlighting potential implications of frozen soils on run‐off processes and hydrochemistry. The simulations showed TDP concentration peaks generally arriving earlier than NO3 but also decreasing faster afterwards, which suggests a significant contribution of plant residue Total dissolved Phosphorus (TDP) to early snowmelt run‐off. Antecedent fall tillage and fertilizer application increased TDP concentrations in spring snowmelt run‐off but did not consistently affect NO3 run‐off. In this case, the antecedent soil moisture content seemed to have had a dominant effect on overwinter soil N biogeochemical processes such as mineralization, which are often ignored in models. This work demonstrates both the need for better representation of cold regions processes in hydrochemical models and the model improvements that are possible if these are included.  相似文献   

18.
The variation in snowmelt energy and energy components were evaluated with respect to forest density. Surface snowmelt rates, surface evaporation from snow cover and meteorological elements were measured in the open and under sparse (411 trees/ha) and dense (1433 trees/ha) larch canopies. The surface snowmelt rate decreased as the forest density increased. Based on the observations and energy balance analyses, we concluded the following. (1) Albedo decreased while the bulk coefficient for latent heat increased with forest density. (2) The duration of snowmelt increased with forest density because the energy for nocturnal cooling of the snow cover decreased. (3) When comparing the open and forested sites, the changes in snowmelt energy with forest density were caused by sensible heat flux. However, the contribution of net radiation was highest in the forested sites. Therefore, the effects of forest cover on the snowmelt energy were different when comparing both the open and forested sites and the sparse and densely forested sites. (4) The ratio of net radiation to snowmelt energy increased with forest density; although both snowmelt energy and net radiation decreased with increased forest density, the snowmelt energy decreased more rapidly. Sensible heat also decreased as forest density increased. Both albedo and downward long‐wave radiation influenced net radiation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号