首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Recession flows of a basin provide valuable information about its storage–discharge relationship as during recession periods discharge occurs due to depletion of storage. Storage–discharge analysis is generally performed by plotting ?dQ/dt against Q , where Q is discharge at time t . For most real world catchments, ?dQ/dt versus Q show a power‐law relationship of the type: ?dQ/dt = kQα . Because the coefficient k varies across recession events significantly, the exponent α needs to be computed separately for individual recession events. The median α can then be considered as the representative α for the basin. The question that arises here is what are the basin characteristics that influence the value of α ? Studies based on a small number of basins (up to 50 basins) reveal that α has good relationship with several basin characteristics. However, whether such a relationship is universal remains an important question, because a universal relationship would allow prediction of the value of α for any ungauged basin. To test this hypothesis, here, we study data collected from a relatively large number of basins (358 basins) in USA and examine the influence of 35 different physio‐climatic characteristics on α . We divide the basins into 2 groups based on their longitudes and test the relationship between α and basin characteristics separately for the two groups. The results indicate that α is not identically influenced by different basin characteristics for the two datasets. This may suggest that the power‐law exponent α of a region is determined by the way local physio‐climatic forces have shaped the landscape.  相似文献   

2.
The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well‐studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non‐linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage–discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
To study the base flow recession at the watershed scale, the log-scale plot of − dQ/dt ∼ Q proposed by Brutsaert and Nieber [10] has been used to estimate the recession parameters, i.e., the slope and interception of the theoretical recession slope curve. The lower envelope or the best fit in some studies is usually used to determine the recession slope curve for natural watersheds. However, human interferences exist in most watersheds around the world. This paper discusses the impact of human interferences, which include groundwater pumping, water diversion and return flow, on the determination of the recession slope curve and the cloud shape of the data points of − dQ/dt ∼ Q. First, values of − dQ/dt generated for hypothetical watersheds are analyzed. Then real data for three watersheds in Illinois is analyzed to verify the hypothetical analysis. The placement of the recession slope curve depends on the coexistence and relative amount of the evapotranspiration, groundwater pumping or even water diversion if it exists, and the return flow. When the water consumption rate is small, the recession slope curve can even be located at the upper envelope of the cloud of points representing historical data. These results suggest that the use of the lower envelope as a guideline for estimating recession parameters for watersheds subject to human interferences can result in biased estimates.  相似文献   

4.
The hydrological catchment model known as TOPMODEL, in its original and most widely‐used form, assumed that subsurface transmissivity decreases exponentially as subsurface water storage decreases. It has been shown that this leads to recession curves of discharge Q that take the form ? dQ/dt = aQb, where a is a constant and b = 2. In order to reproduce a wider range of recession, or base flow, behaviour, a power function for transmissivity was subsequently incorporated into TOPMODEL as an alternative to the exponential function. This was claimed to extend the realistic values of b to range from 1 to 2, inclusive. We show here that the power transmissivity function can also generate values of b > 2 without making unrealistic assumptions (beyond those arguably made in the original TOPMODEL), thus generating recession curves consistent with catchments showing prolonged base flow. Furthermore, the power transmissivity function can generate recession curves that steepen with time (b < 1). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Compared to hydrograph recession analysis, which is widely applied in engineering hydrology, the quantitative assessment of stream salinity with time (i.e. the salinograph) has received significantly less attention. In particular, while in many previous hydrological studies an inverse relationship between hydrograph and salinograph responses is apparent, the concept of salinity accession (the inversely related salinity counterpart to hydrograph recession) has not been introduced nor quantitatively evaluated in previous literature. In this study, we conduct a mathematical analysis of salinograph accession, and determine new quantitative relationships between salinity accession and hydrograph recession parameters. An equation is formulated that reproduces the general trend in salinity accession. A salinity accession parameter kc is then introduced and is shown to be the ratio of direct runoff to total stream flow recession parameters: kr/k. The groundwater recession parameter kg was estimated using a simple and rapid method that uses both salinograph and hydrograph data. Salinity accession type‐curves illustrate that under certain conditions, the relative steepness of individual salinographs is dependent upon the ratio of groundwater salinity to direct runoff salinity: Cg/Cr. The salinity accession algorithms are applied to two contrasting field settings: Scott Creek, South Australia and Sandy Creek, northern Queensland, Australia. It was found that kg > k during periods of obvious stream flow recession, for the events analysed. Salinograph accession behaviour was fairly similar for both sites, despite contrasting environments. Using assumed end‐member salinities for groundwater and direct runoff based upon field observations, the behaviour of kc from the Scott Creek site was approximately reproduced by varying the initial groundwater to runoff flow ratio: Qg0/Qr0, within reasonable parameter ranges. The use of salinograph information when used in addition to standard hydrograph analyses provided useful information on recession characteristics of stream components. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The rate of recession (dQ/dt) in a given time interval has long been plotted in log–log space against the concurrent mean discharge (Qavg). Recent interpretations of these dQ/dt–Qavg plots have sought to look at curves for individual events instead of the data cloud from all the data points together. These individual recession curves have been observed to have near‐constant slope but to have varying intercepts, features hypothesized to possibly be explained by the nature of the contraction of the active channel network during recession. For a steep, 150‐ha forested catchment in central New York state with an 8.8‐km channel network, changes in the active channel network were mapped between April and November 2013. Streamflow recession occurred in a matter of days, but changes in the active channel network occurred over a matter of weeks. Thus, in this catchment, it does not appear that channel contraction directly controls recession. Additionally, field observations indicate that dry down did not occur in a spatially organized, sequential way such that the upper end of higher‐order streams dried first. Instead, the location of groundwater seeps, in part, controlled the active portion of the channel network. Consistent with the presence of different types of flow contributing zones, the paper presents a conceptual model that consists of multiple parallel reservoirs of varying drainage rate and varying degrees of recharge at different times of the year. This conceptual model is able to reproduce a slope of 2 and a seasonal shift in intercept typical of individual recession curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Storage–discharge curves are widely used in several hydrological applications concerning flow and solute transport in small catchments. This article analyzes the relation Q(S) (where Q is the discharge and S is the saturated storage in the hillslope), as a function of some simple structural parameters. The relation Q(S) is evaluated through two‐dimensional numerical simulations and makes use of dimensionless quantities. The method lies in between simple analytical approaches, like those based on the Boussinesq formulation, and more complex distributed models. After the numerical solution of the dimensionless Richards equation, simple analytical relations for Q(S) are determined in dimensionless form, as a function of a few relevant physical parameters. It was found that the storage–discharge curve can be well approximated by a power law function Q/(LKs) = a(S/(L2(? ? θr)))b, where L is the length of the hillslope, Ks the saturated conductivity, ? ? θr the effective porosity, and a, b two coefficients which mainly depend on the slope. The results confirm the validity of the widely used power law assumption for Q(S). Similar relations can be obtained by performing a standard recession curve analysis. Although simplified, the results obtained in the present work may serve as a preliminary tool for assessing the storage–discharge relation in hillslopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Headwater storage–discharge (S–Q) remains one of the least understood processes, and there is renewed interest in the S–Q relation. How well can the S–Q relation be interpreted mechanistically using geometric factors? In this paper, the hillslope storage Boussinesq and hillslope storage kinematic wave equation were adopted to guide the theoretical derivations. Analytical solutions were derived based on the hsKW equation for nine idealized hillslope aquifers, which were subdivided into two groups, i.e. hillslope aquifers with exponential hillslope width function (C1) and hillslope aquifers with Gaussian hillslope width function (C2). We found that analytical expressions of the S–Q relation can be derived for C1 hillslope aquifers. For more compound hillslope aquifers, i.e. C2, no explicit S–Q relation can be obtained. The whole subsurface recession after a rainstorm is simulated by applying the initial saturation condition. We found that the simulated S–Q processes can be characterized by a two‐phase recession, i.e. quick and slow recession. The time (tb) at the dividing point of the quick and slow recessions depends on the geometric factors, such as the plan and profile curvature. In the quick recession for C1, many of the S–Q curves can be described as linear or quasi‐linear functions, which indicate that linear reservoir models can be applied approximately for recession simulations. However, during the slow recession phase of C1 and during the whole recession of C2, the S–Q relations are highly non‐linear. Finally, we compared the hillslope storage kinematic wave and hillslope storage Boussinesq models for simulating subsurface water recession after a rainstorm event in a real‐world headwater catchment (G5) in China. Through comparison of the recession slope curves, we found that the simulated results of the models employing the Gaussian hillslope width function match the observed hydrograph. The results indicated that appropriate organization of the hillslope geometric factors enhances our ability to make S–Q predictions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Sensitivity analysis of the hydrological behaviour of basins has mainly focused on the correlation between streamflow and climate, ignoring the uncertainty of future climate and not utilizing complex hydrological models. However, groundwater storage is affected by climatic change and human activities. The streamflow of many basins is primarily sourced from the natural discharge of aquifers in upstream regions. The correlation between streamflow and groundwater storage has not been thoroughly discussed. In this study, the storage–discharge sensitivity of 22 basins in Taiwan was investigated by means of daily streamflow and rainfall data obtained over more than 30 years. The relationship between storage and discharge variance was evaluated using low‐flow recession analysis and a water balance equation that ignores the influence of rainfall and evapotranspiration. Based on the obtained storage–discharge sensitivity, this study explored whether the water storage and discharge behaviour of the studied basins is susceptible to climate change or human activities and discusses the regional differences in storage–discharge sensitivity. The results showed that the average storage–discharge sensitivities were 0.056 and 0.162 mm?1 in the northern and southern regions of Taiwan, respectively. In the central and eastern regions, the values were both 0.020 mm?1. The storage–discharge sensitivity was very high in the southern region. The regional differences in storage–discharge sensitivity with similar climate conditions are primarily due to differences in aquifer properties. Based on the recession curve, other factors responsible for these differences include land utilization, land coverage, and rainfall patterns during dry and wet seasons. These factors lead to differences in groundwater recharge and thus to regional differences in storage–discharge sensitivity.  相似文献   

11.
ABSTRACT

This study assesses the sensitivity to model fitting methods and segment selection of the estimated parameters A and B of the model dQ/dt = ?AQB for individual events. We investigated about 750 recession events observed at 25 US Geological Survey gauges in the Iowa and Cedar river basins in the United States, with drainage areas ranging from 7 to 17 000 km2. The parameters of these recession events were estimated using three commonly adopted methods and recession segments with different extraction criteria. The results showed that the variations of the parameter estimates for the same recession event were comparable to the variations of parameters between different events due to using different model fitting methods and recession segments. This raises cautions for comparative analysis of individual recessions. The result also implies that the nonlinear direct fitting method is the most robust among the three model fitting methods compared.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Okruszko  相似文献   

12.
Isotope signatures in precipitation from the Global Network for Isotopes in Precipitation around the Mediterranean basin and literature data are compared with isotopic data from a large karstic aquifer in southeast Spain to explain the origin and type of the precipitation events dominating recharge. Analysis of the deuterium excess d at the scale of the Mediterranean basin and at the regional scale allows us to understand the isotopic context of the study area: Campo de Dalias and the Sierra de Gador (Almería province). The origin of precipitation can be determined from its d value. The d value changes as a function of the initial evaporation condition. It depends on the relative humidity and temperature during the evaporation producing the water vapour of the clouds. The water vapour, which dominates the study area, is generated in two areas: the Atlantic Ocean (d = 10‰) and the western Mediterranean basin (d = 15‰). With increasing precipitation volume, the western Mediterranean character dominates. These heavier storms contribute mainly to recharge, as illustrated by the d value of 13·6‰ in deep groundwater of the Campo de Dalias. Weighted d values increase with the volume of precipitation, giving a significant relationship for the southern and eastern coasts of the Iberian Peninsula. This selectivity of d to monthly precipitation was used to estimate the return period of precipitation leading to aquifer recharge at 0·9–4·9 years. Moderate rainfall, which occurs more frequently, still represents ~60–90% of the total precipitation. One of the challenges to meet ever‐growing water demands is to increase recharge from moderate events yielding intermediate quantities per event, but forming the bulk of the annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The purposes of this study are to identify the bias of applying the analysis of a log–log plot of baseflow and to derive an equation to describe successive regional mean baseflow. The function ?dQ/dt = a Qb has been used to describe baseflow in many studies that obtain the values of a and b from the log–log plot. According to analysis in this study, the value of 1 can be assigned to b in two boundary conditions, but the parameter a is proved to be related to the depth of water table and starting time of recession and thus different values of a may be found for different recession events. This paper points out that no single regression line can be obtained by plotting all baseflow data on a log–log diagram. Instead, there should be parallel lines, and each for a recession event. It implies that no single set of parameters a and b can be applied to predict baseflow. Thus, a new equation describing the relationship between three successive mean baseflows was derived in this study. The bias in the analysis of the log–log plot and the ability of the derived equation to predict baseflow were verified for five watersheds in Taiwan. Results indicate that the formula of mean baseflow prediction can provide reasonable estimates of flows with a leading time of 6 days. Furthermore, stream flows of the Tonkawa creek watershed in USA were used to verify that using average flows can result in better predictions than using instantaneous flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

A basic component of any hydrogeological study is the magnitude and temporal variation of groundwater recharge. This can be difficult to assess accurately, particularly in arid and semi-arid rainfed mid-mountain zones, as is the situation in the rural, low population density zones of North-Central Chile. In this study, recharge in the Punitaqui Basin, North-Central Chile, was characterized, contrasting the results of two methods: a modified Thornthwaite-Mather (MTM) and discharge recession analysis (DRA). We found a recharge rate of between 1 and 4% of average annual precipitation. Average recharge estimated by the MTM method is consistently higher than that estimated by DRA. Also, DRA tends to smooth the recharge values, resulting in a lower inter-annual variation coefficient. Both methods identified a threshold value of total annual precipitation, above which recharge can be expected to occur, of the order of 180 mm year?1, consistent with values reported in similar areas.  相似文献   

16.
ABSTRACT

Recession curves are widely used in hydrological studies and projects, such as in rivers, streams or springs. However, no cave drip water has been analysed with recession curves. In this paper, four cave drips were monitored in the Velika Pasica Cave, in order to discover the water flow and storage properties of the epikarst. Various methods were applied in the recession analysis, combining the hydrological characteristics of the four drips: for the slow water in the epikarst, the matching strip method was the identified as the appropriate model for the drip water recession analysis. According to the recession coefficient k, the water flow in the epikarst was divided into fast flow, intermediate flow and slow flow. The volume of water retained in the reservoir (the epikarst storage) could be presented as a function of its specific recession coefficient.
EDITOR D.Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

17.
In this methods note, we present a simple analytical formula to quantify the steady‐state leakage flux (Q) over a perforated aquitard. The flux depends on the aquitard thickness (D), the radius of the perforation (R), the hydraulic conductivity of the material inside the perforation (kfill), the conductivities of the overlying and underlying aquifers (k1 and k2, respectively), and the head difference between the two aquifers (ΔH): This equation assumes an aquitard separating two homogeneous and infinite aquifers (R ? aquifer thickness) in which radial flow to and from the perforation occurs, with no other recharge or discharge boundaries near the perforation. The flux through a perforation in a hypothetical case study with D = 10 m, k1 = 10 m/d, k2 = 20 m/d, R = 0.072 m, and ΔH = 1 m ranges between less than 1 mL/d if the hole is backfilled with bentonite (kfill = 10?4 m/d), to several liters per day if the perforation is backfilled with sand from the overlying aquifer (kfill = 10 m/d), to several m3/d if the perforation forms an open conduit (kfill = 105 m/d). The leakage fluxes calculated with this model agree well with those calculated using a numerical model (MODFLOW).  相似文献   

18.
In headwater catchments, streamflow recedes between periods of rainfall at a predictable rate generally defined by a power–law relationship relating streamflow decay to streamflow. Research over the last four decades has applied this relationship to predictions of water resource availability as well as estimations of basin‐wide physiographic characteristics and ecohydrologic conditions. However, the interaction of biophysical processes giving rise to the form of these power–law relationships remains poorly understood, and recent investigations into the variability of streamflow recession characteristics between discrete events have alternatively suggested evapotranspiration, water table elevation, and stream network contraction as dominant factors, without consensus. To assess potential temporal variability and interactions in the mechanism(s) driving streamflow recession, we combine long‐term observational data from a headwater stream in the southern Appalachian Mountains with state and flux conditions from a process‐based ecohydrologic model. Streamflow recession characteristics are nonunique and vary systematically with seasonal fluctuations in both rates of transpiration and watershed wetness conditions, such that transpiration dominates recession signals in the early growing season and diminishes in effect as the water table elevation progressively drops below and decouples with the root zone with topographic position. As a result of this decoupling, there exists a seasonal hysteretic relationship between streamflow decay and both evapotranspiration and watershed wetness conditions. Results indicate that for portions of the year, forest transpiration may actively compete with subsurface drainage for the same water resource that supplies streamflow, though for extended time periods, these processes exploit distinct water stores. Our analysis raises concerns about the efficacy of assessing humid headwater systems using traditional recession analysis, with recession curve parameters treated as static features of the watershed, and we provide novel alternatives for evaluating interacting biological and geophysical drivers of streamflow recession.  相似文献   

19.
《水文科学杂志》2013,58(4):700-712
Abstract

The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ ? r 2 Bh′ + Pr 2 ? PR 2 = 0, where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the slope of the aquifer—bedrock boundary. The derived flow equation describes radially convergent flow through a sloping aquifer that discharges to a water body of fixed head. One important simplification is that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to hydraulic conductivity, the slope of the aquifer-bedrock, and the downstream constant-head boundary. Computational examples illustrate the application of the solutions.  相似文献   

20.
Five aspects of the hydrology of one-day annual minimum flows QIM, have been studied using data from twelve catchments in Malawi. Results indicate that the log-normal distribution can be fitted to all twelve catchments. Four of the rivers studied are intermittent. Application of statistical methods developed in meterology to the dichotomous-transformed data of these catchments revealed that two are ‘flow-dominant’ and the other two are ‘dry-dominant’. Another catchment is entirely dominated by a hydraulic gradient towards the Shire River and Elphant Marsh and so dries up every dry season for considerable periods of time despite the relatively high rainfall in the catchment. QIM, t-days after the date of occurrence of QIM(May), can be better estimated from simple regression than from an empirically determined recession constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号