首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

2.
This study first explores the role of spatial heterogeneity, in both the saturated hydraulic conductivity Ks and rainfall intensity r, on the integrated hydrological response of a natural slope. On this basis, a mathematical model for estimating the expected areal‐average infiltration is then formulated. Both Ks and r are considered as random variables with assessed probability density functions. The model relies upon a semi‐analytical component, which describes the directly infiltrated rainfall, and an empirical component, which accounts further for the infiltration of surface water running downslope into pervious soils (the run‐on effect). Monte Carlo simulations over a clay loam soil and a sandy loam soil were performed for constructing the ensemble averages of field‐scale infiltration used for model validation. The model produced very accurate estimates of the expected field‐scale infiltration rate, as well as of the outflow generated by significant rainfall events. Furthermore, the two model components were found to interact appropriately for different weights of the two infiltration mechanisms involved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

5.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Post‐wildfire runoff and erosion are major concerns in fire‐prone landscapes around the world, but these hydro‐geomorphic responses have been found to be highly variable and difficult to predict. Some variations have been observed to be associated with landscape aridity, which in turn can influence soil hydraulic properties. However, to date there has been no attempt to systematically evaluate the apparent relations between aridity and post‐wildfire runoff. In this study, five sites in a wildfire burnt area were instrumented with rainfall‐runoff plots across an aridity index (AI) gradient. Surface runoff and effective rainfall were measured over 10 months to allow investigation of short‐ (peak runoff) and longer‐term (runoff ratio) runoff characteristics over the recovery period. The results show a systematic and strong relation between aridity and post‐wildfire runoff. The average runoff ratio at the driest AI site (33.6%) was two orders of magnitude higher than at the wettest AI site (0.3%). Peak runoff also increased with AI, with up to a thousand‐fold difference observed during one event between the driest and wettest sites. The relation between AI, peak 15‐min runoff (Q15) and peak 15‐min rainfall intensity (I15) (both in mm h‐1) could be quantified by the equation: Q15 = 0.1086I15 × AI 2.691 (0.65<AI<1.80, 0<I15<45) (adjusted r2 = 0.84). The runoff ratios remained higher at drier AI sites (AI 1.24 and 1.80) throughout the monitoring period, suggesting higher AI also lengthens the window of disturbance after wildfire. The strong quantifiable link which this study has determined between AI and post‐wildfire surface runoff could greatly improve our capacity to predict the magnitude and location of hydro‐geomorphic processes such as flash floods and debris flows following wildfire, and may help explain aridity‐related patterns of soil properties in complex upland landscapes. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
The forest floor plays an important role in runoff rate, soil erosion and soil infiltration capacity by protecting mineral soils from the direct impact of falling raindrops. Forest floor consists of different kinds of litter with different hydraulic properties. In this study, the inverse method was used to estimate the hydraulic properties of three kinds of forest floor (broad‐leaved, needle‐leaved and mixed‐stand) at three replications in a completely random design. Forest floor samples were collected from the Gilan Province, Iran. The samples were piled up to make long columns 40.88 cm high with an inner diameter of 18.1 cm. Artificial rainfall experiments were conducted on top of the columns, and free drainage from the bottom of the columns was measured in the laboratory. Saturated hydraulic conductivity (Ks), saturated water content and water retention curve parameters (van Genuchten equation) were estimated by the inverse method. The results showed that the Ks of needle‐leaved samples differed significantly (p < 0.05) from those of broad‐leaved and mixed‐stand samples, whereas the latter two did not differ in this regard. No significant differences emerged in the water retention function parameters of van Genuchten (θr, β and α) in the three forest floor samples. The saturated water content of mixed‐stand samples was significantly different (p < 0.05) from that of broad‐leaved and needle‐leaved treatments with the latter two samples showing no significant difference. The good agreement between simulated and observed free drainage for all forest floor samples in the validation period indicates that the estimated hydraulic properties efficiently characterize the unsaturated water flow in the forest floor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The saturated hydraulic conductivity, Ks, is a soil property that has a key role in the partitioning of rainfall into surface runoff and infiltration. The commonly used instruments and methods for in situ measurements of Ks have frequently provided conflicting results. Comparison of Ks estimates obtained by three classical devices—namely, the double ring infiltrometer (DRI), the Guelph version of the constant‐head well permeameter (GUELPH‐CHP) and the CSIRO version of the tension permeameter (CSIRO‐TP) is presented. A distinguishing feature in this study is the use of steady deep flow rates, obtained from controlled rainfall–runoff experiments, as benchmark values of Ks at local and field‐plot scales, thereby enabling an assessment of these methods in reliably reproducing repeatable values and in their capability of determining plot‐scale variation of Ks. We find that the DRI grossly overestimates Ks, the GUELPH‐CHP gives conflicting estimates of Ks with substantial overestimation in laboratory experiments and underestimation at the plot scale, whereas the CSIRO‐TP yields average Ks values with significant errors of 24% in the plot scale experiment and 66% in laboratory experiments. Although the DRI would likely yield a better estimate of the nature of variability than the GUELPH‐CHP and CSIRO‐TP, a separate calibration may be warranted to correct for the overestimation of Ks values. The reasons for such discrepancies within and between the measurement methods are not yet fully understood and serve as motivation for future work to better characterize the uncertainty associated with individual measurements of Ks using these methods and the characterization of field scale variability from multiple local measurements.  相似文献   

10.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.  相似文献   

16.
The time required at a field site to obtain a few measurements of saturated hydraulic conductivity (Ks) will allow for many measurements of soil air permeability (ka). This study investigates if ka measured in situ (ka, in situ) can be a substitute for measurement of Ks in relation to infiltration and surface runoff modelling. Measurements of ka, in situ were carried out in two small agricultural catchments. A spatial correlation of the log‐transformed values existed having a range of approximately 100 m. A predictive relationship between Ks and ka measured on 100‐cm3 soil samples in the laboratory was derived for one of the field slopes and showed good agreement with an earlier suggested predictive Kska relationship. In situ measurements of Ks and ka suggested that the predictive relationships also could be used at larger scale. The Kska relationships together with the ka, in situ data were applied in a distributed surface runoff (DSR) model, simulating a high‐intensity rainfall event. The DSR simulation results were highly dependent on whether the geometric average of ka, in situ or kriged values of ka, in situ was used as model input. When increasing the resolution of Ks in the DSR model, a limit of 30–40 m was found for both field slopes. Below this limit, the simulated runoff and hydrograph peaks were independent of resolution scale. If only a few randomly chosen values of Ks were used to represent the spatial variation within the field slope, very large deviations in repeated DSR simulation results were obtained, both with respect to peak height and hydrograph shape. In contrast, when using many predicted Ks values based on a Kska relationship and measured ka, in situ data, the DSR model generally captured the correct hydrograph shape although simulations were sensitive to the chosen Kska relationship. As massive measurement efforts normally will be required to obtain a satisfactory representation of the spatial variability in Ks, the use of ka, in situ to assess spatial variability in Ks appears a promising alternative. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Wildfires raise risks of floods, debris flows, major geomorphologic and sedimentologic change, and water quality and quantity shifts. A principal control on the magnitude of these changes is field-saturated hydraulic conductivity (Kfs), which dictates surface runoff generation and is a key input into numerical models. This work synthesizes 73 Kfs datasets from the literature in the first year following fire at the plot scale (≤ 10 m2). A meta-analysis using a random effects analysis showed significant differences between burned and unburned Kfs. The reductions in Kfs after fire, expressed by the ratio of Kfs Burned/Kfs Unburned, were 0.46 (95% confidence interval of 0.31-0.70) combining wildfire and prescribed fire and 0.3 (95% confidence interval of 0.13-0.71) for wildfire. No significant differences for Kfs were observed between wildfire and prescribed fire or moderate and high fire severity. Both Kfs magnitude and variability depended more on measurement method than measurement support area at the plot scale, with methods applying head ≥0.5 cm producing larger estimates of Kfs. It is recommended that post-fire efforts to characterize Kfs for modeling or process-based interpretations use methods that reflect the dominant infiltration processes: tension infiltrometers and simulated rainfall methods when soil matrix flow dominates and ponded head methods when macropore flow is critical. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

19.
Simulated rainfall of fluctuating intensity was applied to runoff plots on bare dryland soils in order to explore a new method for analysing the non‐steady‐state responses of infiltration and overland flow. The rainfall events all averaged 10 mm/h but included intensity bursts of up to 70 mm/h and lasting 5–15 min, as well as periods of low intensity and intermittency of up to 25 min. Results were compared with traditional steady‐state estimates of infiltrability made under simulated rainfall sustained at a fixed intensity of 10 mm/h. Mean event infiltration rate averaged 13.6% higher under fluctuating intensities, while runoff ratios averaged only 63% of those seen under constant intensity. In order to understand the changing soil infiltrability, up to three affine Horton infiltration equations were fitted to segments of each experiment. All equations had the same final infiltrability fc, but adjusted values for coefficients f0 (initial infiltrability) and Kf (exponential decay constant) were fitted for periods of rainfall that followed significant hiatuses in rainfall, during which subsurface redistribution allowed near‐surface soil suction to recover. According to the fitted Horton equations, soil infiltrability recovered by up 10–24 mm/h during intra‐event rainfall hiatuses of 15 to 20‐min duration, contributing to higher overall event infiltration rates and to reduced runoff ratios. The recovery of infiltrability also reduced the size of runoff peaks following periods of low intensity rainfall, compared with the predictions based on single Horton infiltration equations, and in some cases, no runoff at all was recorded from late intensity peaks. The principal finding of this study is that, using a set of affine equations, the intra‐event time variation of soil infiltrability can be tracked through multiple intensity bursts and hiatuses, despite the lack of steady‐state conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Determination of saturated hydraulic conductivity, Ks, and the shape parameters α and n of the water retention curve, θ(h), is of paramount importance to characterize the water flow in the vadose zone. This work presents a modified upward infiltration method to estimate Ks, α and n from numerical inverse analysis of the measured cumulative upward infiltration (CUI) at multiple constant tension lower boundary conditions. Using the HYDRUS‐2D software, a theoretical analysis on a synthetic loam soil under different soil tensions (0, 0–10, 0–50 and 0–100 cm), with and without an overpressure step of 10 cm high from the top boundary condition at the end of the upward infiltration process, was performed to check the uniqueness and the accuracy of the solutions. Using a tension sorptivimeter device, the method was validated in a laboratory experiment on five different soils: a coarse and a fine sand, and a 1‐mm sieved loam, clay loam and silt‐gypseous soils. The estimated α and n parameters were compared to the corresponding values measured with the TDR‐pressure cell method. The theoretical analysis demonstrates that Ks and θ(h) can be simultaneously estimated from measured upward cumulative infiltration when high (>50 cm) soil tensions are initially applied at the lower boundary. Alternatively, satisfactory results can be also obtained when medium tensions (<50 cm) and the Ks calculated from the overpressure step at the end of the experiment are considered. A consistent relationship was found between the α (R2 = 0.86, p < 0.02) and n (R2 = 0.97, p < 0.001) values measured with the TDR‐pressure cell and the corresponding values estimated with the tension sorptivimeter. The error between the α (in logarithm scale) and n values estimated with the inverse analysis and the corresponding values measured with pressure chamber were 3.1 and 6.1%, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号