首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

3.
Predictions of post-wildfire flooding and debris flows are needed, typically with short lead times. Measurements of soil-hydraulic properties necessary for model parameterization are, however, seldom available. This study quantified soil-hydraulic properties, soil-water retention, and selected soil physical properties within the perimeter of the 2017 Thomas Fire in California. The Thomas Fire burn scar produced catastrophic debris flows in January 2018, highlighting the need for improved prediction capability. Soil-hydraulic properties were also indirectly estimated using relations tied to soil-water retention. These measurements and estimates are examined in the context of parameterizing post-wildfire hydrologic models. Tension infiltrometer measurements showed significant decreases (p < .05) in field-saturated hydraulic conductivity (Kfs) and sorptivity (S) in burned areas relative to unburned areas. Wildfire effects on soil water-retention were dominated by significant decreases in saturated soil-water content (θS). The van Genuchten parameters α, N, and residual water content did not show significant wildfire effects. The impacts of the wildfire on hydraulic and physical soil properties were greatest in the top 1 cm, emphasizing that measurements of post-fire soil properties should focus on the near-surface. Reductions in Kfs, θs, and soil-water retention in burned soils were attributed to fire-induced decreases in soil structure evidenced by increases in dry bulk density. Sorptivity reductions in burned soils were attributed to increases in soil-water repellency. Rapid post-fire assessments of flash flood and debris flow hazards using physically-based hydrologic models are facilitated by similarities between Kfs, S, and the Green–Ampt wetting front potential (ψf) with measurements at other southern CA burned sites. We suggest that ratios of burned to unburned Kfs (0.37), S (0.36), and ψf (0.66) could be used to scale unburned values for model parameterization. Alternatively, typical burned values (Kfs = 20 mm hr−1; S = 6 mm hr−0.5; ψf = 1.6 mm) could be used for model parameterization.  相似文献   

4.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.  相似文献   

6.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
10.
A limitation of existing models of water and solute movement in fen peats is that they fail to represent processes in the unsaturated zone. This limitation is largely due to a lack of data on the hydraulic properties of unsaturated peat, in particular the relationship between hydraulic conductivity (K) and pressure head (ψ). A tension infiltrometer was used to measure K(ψ) of a fen peat in Somerset, England. It was found that macropores could be important in water and solute movement in this soil type. It was also found that (i) variability of K in this peat was less than that reported for other peats and mineral soils, and (ii) the K data were better described by a log-normal distribution than a normal distribution in accord with findings from other peat and mineral soils. Recommendations on improving the understanding of water and solute movement in the unsaturated zone of this soil type are made. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Determination of saturated hydraulic conductivity, Ks, and the van Genuchten water retention curve θ(h) parameters is crucial in evaluating unsaturated soil water flow. The aim of this work is to present a method to estimate Ks, α and n from numerical analysis of an upward infiltration process at saturation (Cap0), with (Cap0 + h) and without (Cap0) an overpressure step (h) at the end of the wetting phase, followed by an evaporation process (Evap). The HYDRUS model as well as a brute-force search method were used for theoretical loam soil parameter estimation. The uniqueness and the accuracy of solutions from the response surfaces, Ks–n, α–n and Ks–α, were evaluated for different scenarios. Numerical experiments showed that only the Cap0 + Evap and Cap0 + h + Evap scenarios were univocally able to estimate the hydraulic properties. The method gave reliable results in sand, loam and clay-loam soils.  相似文献   

12.
Wildfires raise risks of floods, debris flows, major geomorphologic and sedimentologic change, and water quality and quantity shifts. A principal control on the magnitude of these changes is field-saturated hydraulic conductivity (Kfs), which dictates surface runoff generation and is a key input into numerical models. This work synthesizes 73 Kfs datasets from the literature in the first year following fire at the plot scale (≤ 10 m2). A meta-analysis using a random effects analysis showed significant differences between burned and unburned Kfs. The reductions in Kfs after fire, expressed by the ratio of Kfs Burned/Kfs Unburned, were 0.46 (95% confidence interval of 0.31-0.70) combining wildfire and prescribed fire and 0.3 (95% confidence interval of 0.13-0.71) for wildfire. No significant differences for Kfs were observed between wildfire and prescribed fire or moderate and high fire severity. Both Kfs magnitude and variability depended more on measurement method than measurement support area at the plot scale, with methods applying head ≥0.5 cm producing larger estimates of Kfs. It is recommended that post-fire efforts to characterize Kfs for modeling or process-based interpretations use methods that reflect the dominant infiltration processes: tension infiltrometers and simulated rainfall methods when soil matrix flow dominates and ponded head methods when macropore flow is critical. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
The distribution of soil hydraulic and physical properties strongly influences runoff processes in landscapes. Although much work has been done to quantify and predict the properties of hillslope soils, far less is known about the distribution of soil properties in valley floors. A technique that links the estimation and distribution of soil hydraulic properties in valleys, with easily identified geomorphic features, was developed along a 2 km length of a valley at Brooks Creek in New South Wales, Australia. Soil physical and hydraulic property data were collected across a set of floodplain and fan features within the valley and analysed statistically to determine if soil properties varied significantly between geomorphic features and stratigraphic layers. The results show that the depth‐averaged saturated hydraulic conductivity, Ks, of the soil varies significantly with landform: fan units have Kg values that are twice that of floodplains and colluvial toeslope deposits have Ks values four times higher than floodplains. Given the notorious variability of Ks values in space, the strong statistical separation of soil properties by landform, backed up by strong separation of soil particle size by landform, suggests a way forward in understanding the distribution of soil properties in valleys and their influence on catchment hydrology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Saturated hydraulic conductivity (Ks) affects the soil hydrological process and is influenced by many factors that exhibit strong spatial variations. To accurately measure Ks and its scale, spatial variability and relationship with collapsing gullies, we analysed four double-ring infiltrometer diameters in three soil layers during in situ experiments designed to measure Ks in two typical collapsing gullies (three slope sites) in Tongcheng County of China. The results showed that Ks increased with increasing inner ring diameter, but no significant difference existed between inner diameters of 30 and 40 cm. The Ks in red soil layers was higher than that in sandy soil layers, the transition layers had the lowest values. Ks also varied with slope position, gradually decreasing with distance from the gully head. The suggestion is that the spatial variation in Ks is affected not only by the intrinsic soil properties but also by the interaction with the collapsing gully.  相似文献   

16.
Biological soil crusts (BSCs) are ubiquitous living covers that have been allowed to grow on abandoned farmlands over the Loess Plateau because the “Grain for Green” project was implemented in 1999 to control serious soil erosion. However, few studies have been conducted to quantify the effects of BSC coverage on soil hydraulic properties. This study was performed to assess the effects of BSC coverage on soil hydraulic properties, which are reflected by the soil sorptivity under an applied pressure of 0 (S 0 ) and ?3 (S 3 ) cm, saturated hydraulic conductivity (K s ), wetting front depth (WFD ), and mean pore radius (λ m ), for the Loess Plateau of China. Five classes of BSC coverage (i.e., 1–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and a bare control were selected at both cyanobacteria‐ and moss‐covered sites to measure soil hydraulic properties using a disc infiltrometer under 2 consecutive pressure heads of 0 and ?3 cm, allowing the direct calculation of S 0 , S 3 , K s , and λ m . The WFD was measured onsite using a ruler immediately after the experiments of infiltration. The results indicated that both cyanobacteria and moss crusts were effective in changing the soil properties and impeding soil infiltration. The effects of moss were greater than those of cyanobacteria. Compared to those of the control, the S 0 , S 3 , K s , WFD , and λ m values of cyanobacteria‐covered soils were reduced by 13.7%, 11.0%, 13.3%, 10.6%, and 12.6% on average, and those of moss‐covered soils were reduced by 27.6%, 22.1%, 29.5%, 22.2%, and 25.9%, respectively. The relative soil sorptivity under pressures of 0 (RS 0 ) and ?3 (RS 3 ) cm, the relative saturated hydraulic conductivity (RK s ), the relative wetting front depth (RWFD ), and the relative mean pore radius (m ) decreased exponentially with coverage for both cyanobacteria‐ and moss‐covered soils. The rates of decrease in RS 0 , RS 3 , RK s , RWFD , and m of cyanobacteria were significantly slower than those of moss, especially for the coverage of 0–40%, with smaller ranges. The variations of soil hydraulic properties with BSC coverage were closely related to the change in soil clay content driven by the BSC coverage on the Loess Plateau. The results are useful for simulating the hydraulic parameters of BSC‐covered soils in arid and semiarid areas.  相似文献   

17.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

The accuracy of six combined methods formed by three commonly-used soil hydraulic functions and two methods to determine soil hydraulic parameters based on a soil hydraulic parameter look-up table and soil pedotransfer functions was examined for simulating soil moisture. A novel data analysis and modelling approach was used that eliminated the effects of evapotranspiration so that specific sources of error among the six combined methods could be identified and quantified. By comparing simulated and observed soil moisture at six sites of the USDA Soil Climate Analysis Network, we identified the optimal soil hydraulic functions and parameters for predicting soil moisture. Through sensitivity tests, we also showed that adjusting only the soil saturated hydraulic conductivity, Ks , is insufficient for representing important effects of macropores on soil hydraulic conductivity. Our analysis illustrates that, in general, soil hydraulic conductivity is less sensitive to Ks than to the soil pore-size distribution parameter.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Pan, F., McKane, R.B. and Stieglitz, M., 2012. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture. Hydrological Sciences Journal, 57 (4), 723–737.  相似文献   

19.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

20.
Peat soils are heterogeneous, anisotropic porous media. Compared to mineral soils, there is still limited understanding of physical and solute transport properties of fen peat soils. In this study, we aimed to explore the effect of soil anisotropy on solute transport in degraded fen peat. Undisturbed soil cores, taken in vertical and horizontal direction, were collected from one drained and one restored fen peatland both in a comparable state of soil degradation. Saturated hydraulic conductivity (K s) and chemical properties of peat were determined for all soil cores. Miscible displacement experiments were conducted under saturated steady state conditions using potassium bromide as a conservative tracer. The results showed that (1) the K s in vertical direction (K sv) was significantly higher than that in horizontal direction (Ksh), indicating that K s of degraded fen peat behaves anisotropically; (2) pronounced preferential flow occurred in vertical direction with a higher immobile water fraction and a higher pore water velocity; (3) the 5% arrival time (a proxy for the strength of preferential flow) was affected by soil anisotropy as well as study site. A strong correlation was found between 5% arrival time and dispersivity, K s and mobile water fraction; (4) phosphate release was observed from drained peat only. The impact of soil heterogeneity on phosphate leaching was more pronounced than soil anisotropy. The soil core with the strongest preferential flow released the highest amount of phosphate. We conclude that soil anisotropy is crucial in peatland hydrology but additional research is required to fully understand anisotropy effects on solute transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号