首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explored the hydrological impacts of urbanization, rainfall pattern and magnitude in a developing catchment. The Stormwater Management Model was parameterized, calibrated and validated in three development phases, which had the same catchment area (12.3 ha) but different land use intensities. The model calibration and validation by using sub‐hourly hydro‐meteorological data demonstrated a good performance of the model in predicting stormwater runoff in the different development phases. Based on the results, a threshold between minor and major rainfall events was identified and conservatively determined to be about 17.5 mm in depth. Direct runoff for minor storm events has a linear relationship with rainfall; however, events with a rainfall depth greater than the threshold yield a rainfall–runoff regression line with a clearly steeper slope. The difference in urban runoff generation between minor and major rainfall events diminishes with the increase of imperviousness. Urbanization leads to an increase in the production of stormwater runoff, but during infrequent major storms, the runoff contribution from pervious surfaces reduces the runoff changes owing to urbanization. Rainfall pattern exerts an important effect on urban runoff, which is reflected in pervious runoff. With the same magnitude, prolonged rainfall events with unvarying low intensity yield the smallest peak flow and the smallest total runoff, yet rainfall events with high peak intensity produce the largest runoff volume. These results demonstrate the different roles of impervious and pervious surfaces in runoff generation, and how runoff responds to rainstorms in urban catchments depends on hyetograph and event magnitude. Furthermore, the study provides a scientific basis of the design guideline sustainable urban drainage systems, which are still arbitrary in many countries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

3.
Abstract

The runoff regime of glacierized headwater catchments in the Alps is essentially characterized by snow and ice melt. High Alpine drainage basins influence distant downstream catchments of the Rhine River basin. In particular, during the summer months, low-flow conditions are probable with strongly reduced snow and ice melt under climate change conditions. This study attempts to quantify present and future contributions from snow and ice melt to summer runoff at different spatial scales. For the small Silvretta catchment (103 km2) in the Swiss Alps, with a glacierization of 7%, the HBV model and the glacio-hydrological model GERM are applied for calculating future runoff based on different regional climate scenarios. We evaluate the importance of snow and ice melt in the runoff regime. Comparison of the models indicates that the HBV model strongly overestimates the future contribution of glacier melt to runoff, as glaciers are considered as static components. Furthermore, we provide estimates of the current meltwater contribution of glaciers for several catchments downstream on the River Rhine during the month of August. Snow and ice melt processes have a significant direct impact on summer runoff, not only for high mountain catchments, but also for large transboundary basins. A future shift in the hydrological regime and the disappearance of glaciers might favour low-flow conditions during summer along the Rhine.

Citation Junghans, N., Cullmann, J. & Huss, M. (2011) Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine. Hydrol. Sci. J. 56(6), 981–993.  相似文献   

4.
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Due to scarcity of local data on stormwater pollution levels and rainfall-runoff generation process, very few attempts have been made towards the management of stormwater in sub-tropical rural catchments. An attempt has been made in the present study to characterize and predict the stormwater runoff characteristics using regression modeling from five rural catchments in north-west India. Stormwater samples and flow data were collected from 75 storm events. Samples were analyzed for pH, total suspended solids (TSS), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total kjeldhal nitrogen (TKN), total phosphorous (TP), nitrate-nitrogen (NO 3 - –N), total coliform count (TC), fecal coliform count (FC), Zn, Cu and Fe. It was found that size of the catchment and the land use practices influenced the stormwater quality even in predominantly rural areas, otherwise thought to be homogeneous. The results obtained were related with the antecedent dry days (ADD) and average rainfall. ADD was found to be positively correlated with pollutant loads whereas average rainfall showed negative correlation. The study highlights the importance of ADD in causing greater mean pollutant concentrations except for TKN, TP and NO 3 - –N. Regression models were developed for the studied catchments to estimate mean pollutant concentrations as a function of rainfall variables. Results revealed that measured pollutant concentrations demonstrated high variability with ADD and average rainfall in small rural catchments, whereas in large catchments, factors like land use, extent of imperviousness etc. resulted in low predictability of measured parameters.  相似文献   

6.
Multiple natural and anthropogenic factors affect urban water chemistry. However, little is known about the abundance or temporal variation of major ions in urban runoff. This study explores the spatio‐temporal variation of major dissolved ions (Na, K, Ca, Mg, Cl, NO3, and SO4) and total dissolved solids (TDS) in cold climate urban stormwater. Three watersheds with varying degrees of urban land use intensity and imperviousness (from 36% to 66%) in Helsinki, Finland, were continuously monitored for 5 years using an automated sampling procedure to obtain stormwater discharge and ion concentrations and, thus, loadings. High‐resolution datasets, including long‐term continuous discharge, both measured and simulated (using Storm Water Management Model), and automatic water quality sampling enabled the accurate calculation of loads of ions and TDS. Water quality was related to explanatory watershed characteristics (e.g., watershed physiography and sampling time) using hierarchical clustering, nonmetric multidimensional scaling, and hierarchical partitioning methods. Urban land use contributed to increased ion concentrations and loads year‐round. This study highlights how stormwater ion concentrations are elevated across seasons, indicating chronic pollution phenomena. The greatest loads occurred during summer (except for Na and Cl), while the highest variation in loads was observed in autumn. Significant clusters among ions were found in the hierarchical cluster analysis, suggesting similar temporal patterns and sources for the ions in each cluster. The importance of land use was evident, though in the most urbanized watershed, concentrations were not linked to any of the investigated watershed characteristics. Based on our results, only Na and Cl are manageable by alternative winter road antiskid practices, whereas other ions resulted from diffuse pollution sources, being therefore more difficult to control. Finally, this study contributes to an increased understanding of the temporal and spatial patterns of ions in stormwater and highlights the need for consistent time series data for ion monitoring under cold climatic conditions in order to enable reliable estimates of their loads to adjacent water bodies. Finally, year‐round stormwater treatment is highly recommended.  相似文献   

7.
In the Sahel, there are few long‐term data series available to estimate the climatic and anthropogenic impacts on runoff in small catchments. Since 1950, land clearing has enhanced runoff. The question is whether and by how much this anthropogenic effect offsets the current drought. To answer this question, a physically based distributed hydrological model was used to simulate runoff in a small Sahelian catchment in Niger, from the 1950–1998 rain‐series. The simulation was carried out for three soil surface states of the catchment (1950, 1975 and 1992). The catchment is characterized by an increase in cultivated land, with associated fallow, from 6% in 1950 to 56% in 1992, together with an increase in the extent of eroded land (from 7 to 16%), at the expense of the savanna. Effects of climate and land use are first analysed separately: irrespective of the land cover state, the simulated mean annual runoff decreases by about 40% from the wet period (1950–1969) to the dry period (1970–1998); calculated on the 1950–1998 rainfall‐series, the changes that occurred in land cover between 1950 and 1992 multiplies the mean annual runoff by a factor close to three. The analysis of a joint climatic and anthropogenic change shows that the transition from a wet period under a ‘natural’ land cover (1950) to a dry period under a cultivated land cover (1992) results in an increase in runoff of the order of 30 to 70%. At the scale of a small Sahelian catchment, the anthropogenic impact on runoff is probably more important than that of drought. This figure for relative increase in runoff contributions to ponds, preferential sites of seepage to groundwater, is less than that currently estimated for aquifer recharge, which has been causing a significant continuous water table rise over the same period. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

9.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   

10.
11.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

12.
Snowmelt is an important source of runoff in high mountain catchments. Snowmelt modelling for alpine regions remains challenging with scarce gauges. This study simulates the snowmelt in the Karuxung River catchment in the south Tibetan Plateau using an altitude zone based temperature‐index model, calibrates the snow cover area and runoff simulation during 2003–2005 and validates the model performance via snow cover area and runoff simulation in 2006. In the snowmelt and runoff modelling, temperature and precipitation are the two most important inputs. Relevant parameters, such as critical snow fall temperature, temperature lapse rate and precipitation gradient, determine the form and amount of precipitation and distribution of temperature and precipitation in hydrological modelling of the sparsely gauged catchment. Sensitivity analyses show that accurate estimation of these parameters would greatly help in improving the snowmelt simulation accuracy, better describing the snow‐hydrological behaviours and dealing with the data scarcity at higher elevations. Specifically, correlation between the critical snow fall temperature and relative humidity and seasonal patterns of both the temperature lapse rate and the precipitation gradient should be considered in the modelling studies when precipitation form is not logged and meteorological observations are only available at low elevation. More accurate simulation of runoff involving snowmelt, glacier melt and rainfall runoff will improve our understanding of hydrological processes and help assess runoff impacts from a changing climate in high mountain catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper provides the results of hydrological modelling in a mesoscale glaciated alpine catchment of the Himalayan region. In the context of global climate change, the hydrological regime of an alpine mountain is likely to be affected, which might produce serious implications for downstream water availability. The main objective of this study was to understand the hydrological system dynamics of a glaciated catchment, the Dudh Kosi River basin, in Nepal, using the J2000 hydrological model and thereby understand how the rise in air temperature will affect the hydrological processes. The model is able to reproduce the overall hydrological dynamics quite well with an efficiency result of Nash–Sutcliffe (0.85), logarithm Nash–Sutcliffe (0.93) and coefficient of determination (0.85) for the study period. The average contribution from glacier areas to total streamflow is estimated to be 17%, and snowmelt (other than from glacier areas) accounts for another 17%. This indicates the significance of the snow and glacier runoff in the Himalayan region. The hypothetical rise in temperature scenarios at a rate of +2 and +4 °C indicated that the snowmelt process might be largely affected. An increase in snowmelt volume is noted during the premonsoon period, whereas the contribution during the monsoon season is significantly decreased. This occurs mainly because the rise in temperature will shift the snowline up to areas of higher altitude and thereby reduce the snow storage capacity of the basin. This indicates that the region is particularly vulnerable to global climate change and the associated risk of decreasing water availability to downstream areas. Under the assumed warming scenarios, it is likely that in the future, the river might shift from a ‘melt‐dominated river’ to a ‘rain‐dominated river’. The J2000 model should be considered a promising tool to better understand the hydrological dynamics in alpine mountain catchments of the Himalayan region. This understanding will be quite useful for further analysis of ‘what‐if scenarios’ in the context of global climate and land‐use changes and ultimately for sustainable Integrated Water Resources Management in the Himalayan region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Urban growth is a global phenomenon, and the associated impacts on hydrology from land development are expected to increase, especially in peri‐urban catchments. It is well understood that greater peak flows and higher stream flashiness are associated with increased surface imperviousness and storm location. However, the effect of the distribution of impervious areas on runoff peak flow response and stream flashiness of peri‐urban catchments has not been well studied. In this study, a new geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri‐urban catchments with runoff peak flows and stream flashiness. Study sites include 21 suburban catchments in New York representing a range of drainage area from 5 to 189 km2 and average imperviousness from 10% to 48%. On the basis of RNICO, all development patterns are divided into 3 classes: upstream, centralized, and downstream. Results showed an obvious increase in runoff peak flows and decrease in time to peak when moving from upstream to centralized and downstream urbanization classes. This indicates that RNICO is an effective tool for classifying urban development patterns and for macroscale understanding of the hydrologic behavior of small peri‐urban catchments, despite the complexity of urban drainage systems. We also found that the impact of impervious distribution on runoff peak flows and stream flashiness decreases with catchment scale. For small catchments (A < 40 km2), RNICO was strongly correlated with the average (R2 = .95) and maximum (R2 = .91) gaged peak flows due to the relatively efficient subsurface routing through stormwater and sewer networks. Furthermore, the Richards–Baker stream flashiness index in small catchments was positively correlated with fractional impervious area (R2 = .84) and RNICO (R2 = .87). For large catchments (A > 40 km2), the impact of impervious surface distribution on peak flows and stream flashiness was negligible due to the complex drainage network and great variability in travel times. This study emphasizes the need for greater monitoring of discharge in small peri‐urban catchments to support flood prediction at the local scale.  相似文献   

17.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

18.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

19.
Hydrological signatures that represent snow processes are valuable to gain insights into snow accumulation and snow melt dynamics. We investigated five snow signatures. Considering inter-annual average of each calendar day, two slopes derived from the relation between streamflow and air temperature for different periods and streamflow peak maxima are used as signatures. In addition, two different approaches are used to compute inter-annual average and yearly snow storage estimates. We evaluated the ability of these signatures to characterize average (a) snow melt dynamics and (b) snow storage. They were applied in 10 Critical Zone Observatory catchments of the Southern Sierra mountains (USA) characterized by a Mediterranean climate. The relevance and information content of the signatures are evaluated using snow depth and snow water equivalent measurements as well as inter-catchment differences in elevation. The slopes quantifying the relations between streamflow and air temperature and the date of streamflow peak were found to characterize snow melt dynamics in terms of snow melt rates and snow melt affected areas. Streamflow peak dates were linked to the period of highest snow melt rates. Snow storage could be estimated both on average, considering all years, and for each year. Snow accumulation dynamics could not be characterized due to the lack of streamflow response during the snow accumulation period. The signatures were found potentially valuable to gain insights into catchment scale snow processes. In particular, when comparing catchments or observed and simulated data, they could provide insights into differences in terms of (a) snow melt rate and/or snow melt affected area over the snow melt season and (b) average or yearly snow storage. Requiring only widely available data, these hydrological signatures can be valuable for snow processes characterization, catchment comparison/classification or model development, calibration or evaluation.  相似文献   

20.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号