首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrology, particularly the water table position below the surface (relative water level, RWL), is an important control on biogeochemical and ecological processes in peatlands. The surface elevation (SE) in a peatland oscillates in response to changes in effective stress on the peat matrix mainly caused by water level fluctuations. This phenomenon is called peatland surface oscillation (PSO). To investigate the spatiotemporal variability of PSO, surface elevation and the water level above sea level (AWL) were measured monthly (23 sites) over one year in a warm‐temperate restiad peatland, New Zealand. At one site peat surface elevation was measured indirectly by monitoring AWL and RWL continuously with pressure transducers. Annual PSO (the difference between maximum and minimum surface elevation) ranged from 3·2 to 28 cm (mean = 14·9 cm). Surface elevation changes were caused by AWL fluctuations. Spatially homogenous AWL fluctuations (mean 40 cm among sites) translated into RWL fluctuations reduced 27–56% by PSO except for three sites with shallow and dense peat at the peatland margin (7–17%). The SE‐AWL relationship was linear for 15 sites. However, eight sites showed significantly higher rates of surface elevation changes during the wet season and thus a non‐linear behaviour. We suggest flotation of upper peat layers during the wet season causing this non‐linear behaviour. Surprisingly, PSO was subjected to hysteresis: the positive SE‐AWL relationship reversed after rainfall when the surface slowly rose despite rapidly receding AWL. Hysteresis was more prominent during the dry season than during the wet season. Total peat thickness and bulk density together could only explain 50% of the spatial variability of PSO based on manual measurements. However, we found three broad types of SE‐AWL relationships differing in shape and slope of SE‐AWL curves. These oscillation types reflected patterns in vegetation and flooding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Fallout radionuclides, including lead‐210 excess (210Pbex), have been broadly and successfully used to quantify net hillslope sediment transport in agricultural, pastoral and forested landscapes but have only recently been applied in burned terrain. Quantifying post‐fire erosion is important because fires can amplify hillslope erosion, impacting terrestrial and aquatic habitat and water quality. However, we lack a basic understanding of the fate of 210Pbex in fires. To address this knowledge gap, we collected over 400 soil samples from unburned, moderately and severely burned forested sites in central Idaho. We measured soil 210Pbex content at stable reference and eroding sites and in mineral and organic soil components. At all sites, organic matter had the highest concentration of 210Pbex, representing 30% to 73% of the total activity. At the severely and moderately burned sites, 210Pbex reference inventories were lower by 58% and 41%, with about 40% less organic mass, relative to the unburned site. These results indicate that most 210Pbex in our semi‐arid, forested sites was bound to organic matter, and that a substantial portion of this lead was lost due to forest fires. These losses likely occurred through volatilization and wind transport of smoke and ash. In the moderately burned site, 210Pbex losses were more spatially variable, potentially due to spatially uneven fire intensity and effects. Despite equal percent losses of 210Pbex, lower inventories at the burned sites produced lower calculated net erosion rates relative to the unburned site. Thus, given methodological uncertainties, 210Pbex losses due to fire, and the subsequent sensitivity of calculated net erosion rates to these lower 210Pbex inventories, we suggest this method should not be used in burned terrain to calculate absolute net erosion and deposition rates. However, within a given burned site, 210Pbex inventories still provide useful information describing relative soil losses and storage across the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.  相似文献   

6.
Irregular wetting, water repellency, and preferential flow are well‐documented properties of coastal sandy podzols, though little is known about the effect of fire on unsaturated zone processes in this environment. This study investigates water repellency at and below the soil surface in two coastal sandy podzols following bushfire. Water drop penetration time tests were applied to burned and unburned soils at a high dune field site in South East Queensland, Australia. It was found that the mean water drop penetration time of the burned soil was four times that of the unburned soil, but both soils were largely non‐repellent. Post‐fire repellency peaked below the surface in a patchy layer, in contrast to the laterally extensive layer reported in other studies, and high organic matter content in the soil did not appear to significantly influence repellency post‐burn. Non‐parametric statistics were used to quantify the high spatial variability in water repellency, which was ultimately insufficiently captured by atypically large (n = 1000 drop) datasets. This study confirms the presence of naturally occurring repellency and patchy infiltration in sandy soils while demonstrating that conclusively describing the influence of fire is challenging in a soil with heterogeneous infiltration characteristics. With respect to this uncertainty, it appears that fire does not increase soil water repellency such that infiltration and runoff processes due to fire‐induced water repellency would differ post‐burn.  相似文献   

7.
Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream‐water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post‐fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha?1 yr?1 compared with 1·01 to 1·39 kg ha?1 yr?1 from the unburned drainage and exceeded atmospheric inputs for the first two post‐fire water years. Fire appeared to have minimal long‐term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended‐sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

8.
Peat specific yield (SY) is an important parameter involved in many peatland hydrological functions such as flood attenuation, baseflow contribution to rivers, and maintaining groundwater levels in surficial aquifers. However, general knowledge on peatland water storage capacity is still very limited, due in part to the technical difficulties related to in situ measurements. The objectives of this study were to quantify vertical SY variations of water tables in peatlands using the water table fluctuation (WTF) method and to better understand the factors controlling peatland water storage capacity. The method was tested in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, Canada). In each peatland, water table wells were installed at three locations (up‐gradient, mid‐gradient, and down‐gradient). Near each well, a 1‐m long peat core (8 cm × 8 cm) was sampled, and subsamples were used to determine SY with standard gravitational drainage method. A larger peat sample (25 cm × 60 cm × 40 cm) was also collected in one peatland to estimate SY using a laboratory drainage method. In all sites, the mean water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations varying between 15 and 29 cm for all locations. The WTF method produced similar results to the gravitational drainage experiments, with values ranging between 0.13 and 0.99 for the WTF method and between 0.01 and 0.95 for the gravitational drainage experiments. SY was found to rapidly decrease with depth within 20 cm, independently of the within‐site location and the mean annual water table depth. Dominant factors explaining SY variations were identified using analysis of variance. The most important factor was peatland site, followed by peat depth and seasonality. Variations in storage capacity considering site and seasonality followed regional effective growing degree days and evapotranspiration patterns. This work provides new data on spatial variations of peatland water storage capacity using an easily implemented method that requires only water table measurements and precipitation data.  相似文献   

9.
The natural carbon storage function of peatland ecosystems can be severely affected by the abandonment of peat extraction, influencing peatland drainage, leading to large and persistent sources of atmospheric CO2. Moreover, these cutover peatlands have a low and variable water table position and high tension at the surface, creating harsh ecohydrological conditions for vegetation re‐establishment, particularly peat forming Sphagnum moss. Standard restoration techniques aim to restore the peatland to a carbon accumulating system through various water management techniques to improve hydrological conditions and by reintroducing Sphagnum at the surface. However, restoring the hydrology of peatlands can be expensive due to the cost of implementing the various restoration techniques. This study examines a peat extraction‐restoration technique where the acrotelm is preserved and replaced directly on the cutover peat surface. An experimental peatland adopting this acrotelm transplant technique had both a high water table and peat moisture conditions providing sufficient water at the surface for Sphagnum moss. Average water table conditions were higher at the experimental site (?8·4 ± 4·2 cm) compared to an adjacent natural site (?12·7 ± 6·0 cm) suggesting adequate moisture conditions at the restored surface. However, the experimental site experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction‐restoration process. However, soil–water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and experimental sites. Any structural changes within the peat matrix were therefore minimal. Moreover, low soil‐water tensions were maintained well above the laboratory measured critical Sphagnum threshold of 33% (?100 mb) VMC, further indicating favourable conditions for Sphagnum moss survival and growth. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Wildfires in mountainous regions have been documented to enhance water repellent soils which can increase runoff, erosion, and sedimentation during subsequent rain events. However, the extent of soil hydrophobicity and water repellency varies significantly with burn severity and between ecosystems, and the southern Appalachians remain an understudied region. Here we examine the impact of the low severity Chestnut Knob Fire, which occurred in the fall 2016, on soil properties and runoff in South Mountains State Park. To examine these impacts, we installed crest-stage gauges in burned (n = 10) and unburned (n = 8) colluvial hollows to compare peak runoff. Results from the 2017 field season indicated that burned locations produced significantly higher peak discharges than unburned sites. From July 2019 to January 2020, we repeated the experiment and found that burned areas produced runoff comparable to unburned areas. Examination of soil profiles during the summer of 2017 found high variability in hydrophobicity in both the burned (n = 10) and unburned (n = 2) soils. Further, we found that burned soils had significantly deflated organic surface horizons compared with unburned soils. We interpret the differences in runoff in 2017 to be the result of a combination of increased hydrophobicity and decreased soil moisture storage capacity in organic rich surface soils. While the recovery we observed here was relatively fast, it is important to understand that increased runoff immediately after a fire likely increases the chances of sediment mobilization and debris flow occurrence.  相似文献   

11.
The frequency and intensity of drought is projected to increase within the boreal region under future climatic conditions. Peatlands are widely considered to regulate water loss under drought conditions, increasing surface resistance (rs) and reducing evaporative losses. This maintains peat moisture content, increasing the resilience of these globally important carbon stores. However, the magnitude and form of this important negative feedback response remains uncertain. To address this, we monitored the response of rs to drought within four peat cores under controlled meteorological conditions. When the water‐table was dropped to a depth of 0.30 m and the humidity reduced to ≤40%, a step shift in rs from ~50 s m‐1 up to 1000 s m‐1 was observed within burned and unburned peat, which virtually shuts down evaporation, limiting water loss. We show that measured near‐surface tension cannot be used to directly calculate this transition in peat surface resistance. However, empirical relationships that account for strong vertical variations in tension through the near‐surface and/or disequilibrium between pore air and near‐surface pore water pressure provide the potential to incorporate this negative feedback response into peatland ecohydrological models. Further observations are necessary to examine this response under dynamic atmospheric conditions. We suggest that the link between surface temperature and evaporation provides potential to further examine this feedback in either burned peatlands or peatlands with a low vascular vegetation cover. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Oscillation of the peat surface is an important mechanism for hydrological self‐regulation in bogs. As the water table rises in the wet season, the peat body expands, raising the bog surface and increasing water storage. With seasonal drying, the water table declines, the peat loses volume, and the bog surface drops, thereby keeping Sphagnum mosses in close contact with the water table. The oscillation of surface elevation in a Pacific coastal temperate raised bog was monitored at multiple sites for 4–12 years in 8 different plant communities of both peat‐harvested and unharvested sites to determine how bog surface oscillation relates to site conditions. The multiyear averages of bog surface oscillation for the different sites ranged from 2 to 34 cm (mean: 10.8 cm). In harvested sites, surface oscillation was linked to a larger water level amplitude and a shallower water table. In unharvested sites, a shallow water table was also a strong predictor of surface oscillation, but water level amplitude was negatively correlated to surface oscillation. This discrepancy was attributed to rewetting and regeneration of harvested sites, as well as historic drainage in many of the unharvested sites that reduced the elasticity of the peat. Surface oscillation differed significantly between some of the plant communities, generally between drier and wetter sites. In disturbed bogs, regeneration of a more elastic surface peat can increase the magnitude of peat volume change and bring about the return of self‐regulating mechanisms. Bog surface oscillation may be an important metric for assessing the restoration success or storage capacity of raised bogs in similar climatic settings.  相似文献   

13.
The High Park Fire burned ~35 300 ha of the Colorado Front Range during June and July 2012. In the areas of most severe burn, all trees were killed and the litter and duff layers of soil were completely removed. Post‐fire erosion caused channel heads to develop well upslope from pre‐fire locations. The locations of 50 channel heads in two burned catchments were documented and the range of drainage areas contributing to these channel heads to drainage areas of unburned channel heads in the region measured previously were compared. Mean drainage area above channel heads in the burned zone decreased by more than two‐orders of magnitude relative to unburned sites. Drainage area above channel heads between the two burned catchments does not differ significantly with respect to slope, likely as a result of differences in surface roughness between the two sites following the fire. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

15.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

16.
M. A. Shantz  J. S. Price 《水文研究》2006,20(18):3799-3814
Blocking drainage ditches and creating bunds to limit surface water losses are important for restoring abandoned peat‐extraction sites in North America. However, these runoff control techniques have not been well characterized, particularly during the snowmelt period. Therefore, patterns of runoff timing and magnitude were evaluated in a peatland (Bois‐des‐Bel, Quebec, Canada) undergoing restoration (restored site), in comparison with an unrestored section of the same peatland (unrestored site). Snowmelt dominated runoff, representing over 79% of the April to August runoff for both sites in 2001. Low (25–35 cm) bunds constructed on the restored site detained water for much of the melt period, but some water loss occurred where bunds were breached. Overland flow and surface ponding were prevalent at the restored site, but were not evident at the unrestored site. At the restored site, the presence of bunds and frozen, saturated (thus impermeable) ground contributed to differences in snowmelt runoff patterns relative to the unrestored site. In the post‐snowmelt period (May–August 2001 and 2002), restored site runoff was reduced to 25% of that lost at the unrestored site. Both hydrometric and chemical hydrograph separation analysis using electrical conductivity indicated that blocked ditches restricted water losses from much of the restored site during the summer months, when the bunds had little effect on runoff. However, discharge peaks were greater at the restored site relative to the unrestored site and generally occurred more quickly following rainfall, because of the wetter antecedent conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A fundamental question in arid land management centers on understanding the long‐term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground‐based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high‐resolution vegetation structure and bare‐earth surface models for six sample plots in the Grand Canyon‐Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil‐surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire‐induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

18.
The water balance of four different rainforest types in the Wet Tropics region of north Queensland is inferred from measurements of canopy hydrological components undertaken for periods between 391 to 657 days. These measurements of rainfall, cloud interception, stem-flow, throughfall, canopy interception and transpiration have revealed considerable differences in the canopy water balance of different locations as a result of forest structural differences, altitude, exposure and climate. Cloud interception is a significant extra input of water to forests at high altitude sites (>1000 m) and varies between 7 and 29% of the total water input. At coastal and lower montane rainforests annual total evaporation is consistently around 50% of the total water input, but in upper montane cloud forest this drops dramatically to only 13% of the water input. At all sites actual evaporation is greater than potential evaporation for most of the year and on an annual basis exceeds potential by between 2 and 53%. The source of this additional energy is uncertain, but is likely to come from advection. Annual interception at all the rainforest sites was greater than annual transpiration, with transpiration dominating in the dry season and interception dominating in the wet season. All of the rainforests have a large annual net water balance to sustain runoff and recharge. Towards the end of the dry season runoff and recharge can cease in coastal lowland and lower mountain forests and they may have to draw on soil moisture and/or ground water at this time. In contrast, upper montane cloud forests have a positive net water balance throughout the year and are therefore an important source of dry season river flows. Furthermore, their exceptionally large annual runoff (∼6500 mm year−1) is a major source of downstream water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The capability of peatland ecosystems to regulate evapotranspiration (ET) following wildfire is a key control on the resilience of their globally important carbon stocks under future climatic conditions. Evaporation dominates post-fire ET, with canopy and sub-canopy removal restricting transpiration and increasing evaporation potential. Therefore, in order to project the hydrology and associated stability of peatlands to a diverse range of post-fire weather conditions and future climates the regulation of evaporation must be accurately parameterised in peatland ecohydrological models. To achieve this, we measure the surface resistance (rs) to evaporation over the growing season one year post-fire within four zones of a boreal peatland that burned to differing depths, relating rs to near surface soil tensions. We show that the magnitude and temporal variability in rs varies with burn severity. At the peatland scale, rs and near-surface tension correlates non-linearly. However, at the point scale no relationship was evident between temporal variations in rs and near-surface tension across all burn severities; in part due to the limited fluctuation in near-surface tensions and the precision of rs measurements. Where automated measurements enabled averaging of errors, the relationship between near-surface tension and rs switched between periods of strong and weak correlation within a burned peat hummock. This relationship, when strong, deviated from that obtained under steady state laboratory conditions; increases in rs were more sensitive to fluctuations in near-surface tension under dynamic field conditions. Calculating soil vapour densities directly from near-surface tensions is shown to require calibration between peat types and provides little if any benefit beyond the derivation of empirical relationships between rs and measured soil tension. Thus, we demonstrate important spatiotemporal fluctuations in post-fire rs that will be key to regulating post-fire peatland hydrology, but highlight the complex challenges in effectively parameterising this important underlying control of near-surface tensions within hydrological simulations.  相似文献   

20.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号