首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a dynamic flood‐frequency analysis model considering the storm coverage effect is proposed and applied to six sub‐basins in the Pyungchang River basin, Korea. The model proposed is composed of the rectangular pulse Poisson process model for rainfall, the Soil Conservation Service curve number method for infiltration and the geomorphoclimatic instantaneous unit hydrograph for runoff estimation. Also, the model developed by Marco and Valdes is adopted for quantifying the storm‐coverage characteristics. By comparing the results from the same model with and without the storm‐coverage effect consideration, we could quantify the storm‐coverage effect on the flood‐frequency analysis. As a result of that, we found the storm‐coverage effect was so significant that overestimation of the design flood was unavoidable without its consideration. This also becomes more serious for larger basins where the probability of complete storm coverage is quite low. However, for smaller basins, the limited number of rain gauges is found to hamper the proper quantification of the storm‐coverage characteristics. Provided with a relationship curve between the basin size and the storm coverage (as in this study), this problem could be overcome with an acceptable accuracy level. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Many recent studies have successfully used neural networks for non‐linear rainfall‐runoff modelling. Due to fundamental limitation of linear structures, approaches employing linear models have been generally considered inferior to the neural network approaches in this area. However, the authors believe that with an appropriate extension, the concept of linear impulse responses can be a viable tool since it enables one to understand underlying dynamics of rainfall‐runoff processes. In this paper, the use of competing impulse responses for rainfall‐runoff analysis is proposed. The proposed method is based on the switch over of competing linear impulse‐responses, each of which satisfies the constraints of non‐negativity and uni‐modality. The computational analyses performed for the rainfall‐runoff data in the Seolma‐Chun experimental basin, Korea showed that the proposed method can yield promising results. Considering the basin characteristics as well as the results from this study, it may be concluded that three impulse responses are enough for rainfall‐runoff analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The near-to-nature approach has been established as best practice for stormwater management. However, pollutant mobility within such systems and its impact on small receiving waters are partly unexplained. The study takes place in an urbanised headwater catchment in south-western Germany with an area of 0.4 km2. Runoff from roofs, roads, parking lots and gardens is collected in wells or trenches and stored in private and public dry detention basins. Accordingly, this study investigates pollutant input to a detention pond, removal efficiency and the associated effects on the receiving water.Grab samples with high temporal resolution of the receiving water (16 flood events with 315 samples and 41 baseflow samples), the three inflows of the detention basin and its outflow (four flood events with 64 samples) were taken. The outflow of the dry pond is recovered in the hydro- and chemographs of the receiving water. Runoff from roads with increased traffic volume caused the highest PAH inputs and runoff from the residential area showed the highest zinc concentrations, which partly infringe European Environmental Quality Standards. Yearly pollutant inputs (DOC, TSS, PAH, nutrients, metals) from the settlement into the tributary are reduced in the detention pond by up to 80%.  相似文献   

6.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Gangsheng Wang  Jun Xia 《水文研究》2010,24(11):1455-1471
Hydrological simulation and assessment in a dam–sluice regulated river basin are a complex and challenging issue. In this article, an improved SWAT2000 modelling system was developed that incorporated the Shuffled complex evolution (SCE‐UA) optimization algorithm and the multi‐site and multi‐objective calibration strategy. The implication of multi‐objective is different for different types of outlets, i.e. streamflow for an ordinary outlet, inflow for a sluice, and water storage for a reservoir. Model parameters were redefined to improve model simulations. The surface runoff lag time (SURLAG) was extended as a spatially distributed parameter, and a correction coefficient was introduced to modify the saturated hydraulic conductivity. The modelling system was then applied to the Huai River basin of China under various climatic conditions, including a very dry year (1999), a dry year (1981), an average year (1971), and wet year (1991). In all, 26 dams and 35 sluices were considered, among which about 20 dams/sluices were used for model calibration. The impact assessment primarily focused on the very dry year (1999). The results indicated that the released water from large reservoirs was blocked in the river channels by sluices located downstream. In the very dry year, the dam–sluice operations could result in an increase of the runoff volume during the non‐flood season and a decrease in runoff during the flood season, but the changing magnitude during the non‐flood season was much greater. An important conclusion of this case study is that the sluices in the Sha‐Yin branch located in the north region and the dams in the southern mountainous region above the Wangjiaba Hydrological Station have played the most significant role in regulating the streamflow of the entire river basin. The methods addressed in this article can simulate hydrological regime in the river basins regulated by dams and sluices under different climatic conditions at the whole‐watershed scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The rainfall–runoff process consists of an excess rainfall process and a runoff concentration process. A transient one-dimensional finite difference model describing the partitioning of precipitation between surface runoff, soil moisture storage and deep percolation, through the coupling of saturated–unsaturated zones, has been implemented in a geographical information system including data on vegetation cover derived from the Landsat Thematic Mapper. The model has been used to simulate both the rainfall excess and the resultant outflow hydrographs for a small arid zone drainage basin in the Andean region of Argentina. The overall hydrograph shape, peak discharge, runoff volume and flow duration are predicted within a relative squared error of 13.2%. The spatial input data and the model structure are discussed and suggestions for applications to larger complex basins and for future refinements in the technique are presented.  相似文献   

10.
We propose a new runoff model including an outflow process that was applied to two adjacent basins (CL, TL) located in Lambir Hills National Park in north‐central Sarawak, Malaysia. Rainfall, runoff, topography, and soil layer thickness were observed. About 19% of annual runoff was observed in the CL basin (21.97 ha), whereas about 46% was observed in the TL basin (23.25 ha). It was inferred that the CL basin has an outflow because of low base flow, small runoff peak, and excessive water loss. By incorporating the outflow process into the HYdrological CYcle MODEL, good agreement between the data generated by the model and that observed was shown, with the exception of the data from the rainless period. Then, the fitting parameters for each basin were exchanged, except for the outflow parameter, and the characteristics of each basin were compared by calculating virtual runoff. As a result, the low base flow of the CL basin was estimated by the movement of the rainwater that escaped from the basin as deep percolation or lateral flow (11% of rainfall). The potential of the CL basin for mitigating flood and drought appeared to be higher than that of the TL basin. This is consistent with the topographic characteristics of the CL basin, which has a gentler slope than the TL basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Lei Wang  Jaehyung Yu 《水文研究》2012,26(19):2973-2984
The construction of stormwater detention basins is a best management practice to effectively control floods, to provide additional surface storage for excess floodwater and to compensate for the adverse effects of urban development. Traditional field‐based levelling survey methods are very time consuming and subject to human‐induced arbitrariness and error. This article presents an approach to modelling detention basins measured from light detection and ranging remote sensing data. A case study is illustrated by using the White Oak Bayou watershed of Harris County, Texas. The storage–stage curve obtained from the volumetric analysis is used in a modified detention basins routing model, which was developed by adding the weir structure control to the traditional hydrologic reservoir routing equations. The model simulation showed that the peak flow of the synthetic 100‐year reoccurrence event was effectively reduced and delayed by the detention basins. The comparison with the simulation results from the traditional reservoir routing model suggested that previous studies using the reservoir routing model were likely to underestimate the flood reduction effect of detention basins. The sensitivity analysis of the parameters showed that the detention basin design and evaluation should pay more attention on the weir height and river channel's roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Robert E. Criss 《水文研究》2018,32(11):1607-1615
The rainfall–run‐off convolution integral is analytically solved for several models for the elementary hydrograph. These solutions can be combined with available rainfall frequency analyses to predict flood flows along streams for different recurrence intervals, using no free parameters for gauged streams and one estimable parameter for ungauged streams. Extreme discharge magnitudes at gauged sites can be typically estimated within a factor of two of actual records, using no historical data on extreme flows. The flow predictions reproduce several important characteristics of the flood phenomenon, such as the slope of the regression line between observed extreme flows and basin area on the conventional logQ versus logA plot. Importantly, for the models and data sets investigated, the storm duration of greatest significance to flooding was found to approximate the intrinsic transport timescale of the particular watershed, which increases with basin size. Thus, storms that deliver extraordinary amounts of rainfall over a particular time interval will most greatly activate basins whose time constants approximately equal that interval. This theoretical finding is supported by examination of the regional hydrological response to the massive storms of September 14, 2008, and April 28–30, 2017, which caused extraordinary record flooding of basins of about 5–100 km2 and 500–4,000 km2, respectively, but produced few records in basins that were larger or smaller than those ranges.  相似文献   

13.
The lack of adequate field measurements often hampers the construction and calibration of rainfall‐runoff models over many of the world's watersheds. We adopted methodologies that rely heavily on readily available remote sensing datasets as viable alternatives for assessing, managing, and modelling of such remote and inadequately gauged regions. The Soil and Water Assessment Tool was selected for continuous (1998–2005) rainfall‐runoff modelling of one such area, the northeast part of the Pishin Lora basin (NEPL). Input to the model included satellite‐based Tropical Rainfall Measuring Mission precipitation data, and modelled runoff was calibrated against satellite‐based observations, the latter included: (i) monthly estimates of the water volumes impounded by the Khushdil Khan (latitude 30°40′N, longitude 67°40′E), and the Kara Lora (latitude 30°34′N, longitude 66°52′E) reservoirs, and (ii) inferred wet versus dry conditions in streams across the NEPL. Calibrations were also conducted against observed flow reported from the Burj Aziz Khan station at the NEPL outlet (latitude 30°20′N; longitude 66°35′E). Model simulations indicate that (i) average annual precipitation (1998–2005), runoff and recharge in the NEPL are 1300 × 106 m3, 148 × 106 m3, and 361 × 106 m3, respectively; (ii) within the NEPL watershed, precipitation and runoff are high for the northeast (precipitation: 194 mm/year; runoff: 38 × 106 m3/year) and northwest (134 mm/year; 26 × 106 m3/year) basins compared to the southern basin (124 mm/year; 8 × 106 m3/year); and (3) construction of delay action dams in the northeast and northwest basins could increase recharge from 361 × 106 m3/year up to 432 × 106 m3/year and achieve sustainable extraction. The adopted methodologies are not a substitute for traditional approaches, but they could provide first‐order estimates for rainfall, runoff, and recharge in the arid and semi‐arid parts of the world that are inaccessible and/or lack adequate coverage with field data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Daily rain series from southern Sweden with records dating back to the 1870s have been analysed to investigate the trends of daily and multi‐day precipitation of different return periods with emphasis on the extremes. Probabilities of extreme storms were determined as continuously changing values based on 25 years of data. An extra set of data was used to investigate changes in Skåne, the southernmost peninsula of Sweden. Another 30‐year data set of more than 200 stations of a dense gauge network in Skåne was used to investigate the relation between very large daily rainfall and annual precipitation. The annual precipitation has increased significantly all over southern Sweden due to increased winter precipitation. There is a trend of increasing maximum annual daily precipitation at only one station, where the annual maximum often occurs in winter. The number of events with a short return period is increasing, but the number of more extreme events has not increased. Daily and multi‐daily design storms of long return periods determined from extreme value analysis with updating year by year are not higher today than during the last 100 years. The largest daily storms are not related to stations with annual rainfall but seem to occur randomly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Rainfall and runoff depths were examined for 763 storms on 26 urban basins located in 12 countries. For 17 of the basins, impervious surfaces were the major contributors to storm runoff. These basins were generally smaller than 25 ha and had small to medium storms in the data set. Nine basins had significant amounts of runoff from pervious as well as impervious surfaces. Eight of these basins are located in Australia. For all 26 basins, plots of rainfall and runoff depths were used to estimate the effective impervious area and the impervious area initial loss. The data plotted close to a single straight line on all basins, indicating that the effective impervious area remained constant for all storm sizes. The effective impervious fraction was related to total impervious area and the directly connected impervious fraction estimated from maps. For the basins with pervious runoff, the depth of rain in the storm was the most important factor in determining pervious runoff for rainfalls less than 50 mm, while for larger storms other factors including rainfall intensity and antecedent wetness were also found to be significant.  相似文献   

16.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (<1 km2) basins with old‐growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation were tested for approximately 800 storms over a nearly 30‐year period. Analyses controlled for (1) snowpack presence/absence, (2) antecedent soil moisture, and (3) hillslope length and gradient. For small storms (<150 mm precipitation), controlling for precipitation, the presence of a snowpack on near‐saturated soil increased the threshold of precipitation before hydrograph rise, extended the start lag, centroid lag, and duration of storm hydrographs, and increased the peak discharge. The presence of a snowpack on near‐saturated soil sped up and steepened storm hydrographs in a basin with short steep slopes, but delayed storm hydrographs in basins with longer or more gentle slopes. Hydrographs of the largest events, which were extreme regional rain and rain‐on‐snow floods, were not sensitive to landform characteristics or snowpack presence/absence. Although the presence of a snowpack did not increase peak discharge in small, forested basins during large storms, it had contrasting effects on storm timing in small basins, potentially synchronizing small basin contributions to the larger basin hydrograph during large rain‐on‐snow events. By altering the relative timing of hydrographs, snowpack melting could produce extreme floods from precipitation events whose size is not extreme. Further work is needed to examine effects of canopy openings, snowpack, and climate warming on extreme rain‐on‐snow floods at the large basin scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrologic responses to variations in storm direction provide useful information for the analysis and prediction of floods and the development of watershed management strategies. However, the prediction of hydrologic responses to changes in storm direction is a difficult task that requires meteorological simulations and extensive computation. It is also difficult to identify the center of rotation of a storm affecting a basin of interest. Therefore, we propose a simple approach of rotating the basin position relative to the storm within the rainfall–runoff simulation model instead of changing the pathway of the storm, which we term the basin rotation method (BRM). The proposed BRM was tested on four major typhoon events in South Korea. The results illustrated that the original basin orientation (i.e., before it was rotated) exhibits earlier and higher peak discharge and earlier recession compared to the basin after rotation. We conclude that the proposed method (BRM) is a viable alternative for use in assessing the directional influence of moving storms on floods caused by historical rather than hypothetical storm events.  相似文献   

19.
The Soil Conservation Service Curve Number (SCS‐CN) method is a popular rainfall–runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS‐CN is a simple and valuable approach to quantify the total streamflow volume generated by storm rainfall, but its use is not appropriate for estimating the sub‐daily incremental rainfall excess. To overcome this drawback, we propose to include the Green‐Ampt (GA) infiltration model into a mixed procedure, which is referred to as Curve Number for Green‐Ampt (CN4GA), aiming to distribute in time the information provided by the SCS‐CN method. For a given storm, the computed SCS‐CN total net rainfall amount is employed to calibrate the soil hydraulic conductivity parameter of the GA model. The proposed procedure is evaluated by analysing 100 rainfall–runoff events that were observed in four small catchments of varying size. CN4GA appears to provide encouraging results for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, better agreement with the observed hydrographs than the classic SCS‐CN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Seth Rose 《水文研究》2011,25(6):901-914
A method was developed to investigate the long‐term (months‐to‐years) effects (both magnitude and duration) of antecedent rainfall upon subsequent runoff coefficients (RCs) or runoff/rainfall ratios. The method was applied to a four‐state region (Georgia, South Carolina, North Carolina, and Virginia) within the southeastern Piedmont Province of the United States and incorporated a 59‐year data set of 19 United States Geological Survey stream gages and 57 National Climatic Data Center rain gages. The method was designed to facilitate statistical comparisons [Mann–Whitney rank sum tests] between various groups of normalized runoff coefficients (NRCs) representing 6–36 month periods which differed in terms of antecedent rainfall conditions. The results of this study show that under all subsequent rainfall conditions, with the exception of excess rainfall, a 1‐year period of antecedent drought lowered NRCs for at least 1 year following the drought. The principal finding of this study is that a year‐long drought period within the southeastern Piedmont Province lowers NRCs by ~25% during the following year when rainfall returns to normal. In most cases, RCs are significantly lower during the second year following a drought than they would be when anteceded by normal rainfall; however, the effects of drought wane during this period. This is a statistical and regional method that can be modified to other study areas; however, it cannot be used to predict storm‐event rainfall–runoff relationships for any specific basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号