首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

2.
Several Paleozoic sutures in Southwestern China provide a record of the history of the Paleo-Tethys Ocean, whose birth and final closure are associated with the breakup and assembly of Gondwanaland. Recent studies indicate that there are widespread OIB-type mafic volcanic rocks within these suture zones and intervening terranes. This paper examines the geology and geochemistry of volcanic rocks in the Xiaruo-Tuoding area, a remnant passive margin succession of the Jinshajiang Paleo-Tethyan Ocean. The sedimentary and volcanic stratigraphy of this area is interpreted as a seaward dipping margin with a few continentward dipping normal faults. The available geochemistry of these volcanic rocks suggest that they are OIB-like basalts, characterised by SiO2 = 42.78–50.46 wt.%, high TiO2 contents (TiO2 = 2.2–3.55 wt.%), moderate MgO = 4.15–6.49 wt.%, Mg# = 0.37–0.50, high Ti/Y ratios (mostly > 450), large ion lithosphere elements enrichment, high strength field elements and rare earth elements, with La/Nb = 1.04–1.39, Ce/Yb = 18.38–30, Sm/Yb = 2.16–3.52, (87Sr/86Sr)i = 0.705350–0.707867, and Nd(t) = − 1.43–1.90. These geochemical and isotopic signatures are generally similar to those of the Emeishan flood basalts, which together with stratigraphic constraints, demonstrate that these volcanics were formed in a volcanic rifted margin, probably associated with a mantle plume. A new model is proposed to interpret the evolution of the Jinshajiang Paleo-Tethyan Ocean and its possible relationship to the Emeishan mantle plume. In this model, we argue that the opening of the Jinshajiang Paleo-Tethyan Ocean in the Carboniferous was caused by a mantle plume. The mantle plume was active to the east along the western margin of the Yangtze Craton between 300 and 260 Ma, from which the voluminous Emeishan flood basalts were erupted at 260 Ma. The closure of the Jinshajiang Ocean occurred since the Middle Permian. Continuous westward subduction generated the Jiangda-Weixi magmatic arc to the west of the Jinshajiang suture. This subduction also partly destroyed and/or tectonically sliced the volcanic rifted margin. Some seaward dipping volcanic-sedimentary sequences on the east flank of the Jinshajiang Ocean were preserved, but are strongly deformed.  相似文献   

3.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

4.
At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5–150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2–20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8–5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr–Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate–carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.  相似文献   

5.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

6.
High-calcium, nepheline-normative ankaramitic basalts (MgO > 10 wt.%, CaO/Al2O3 > 1) from Rinjani volcano, Lombok (Sunda arc, Indonesia) contain phenocrysts of clinopyroxene and olivine (Fo85–92) with inclusions of spinel (Cr# 58–77) and crystallised melt. Olivine crystals have variable but on average low NiO (0.10–0.23 wt.%) and high CaO (0.22–0.35 wt.%) contents for their forsterite number. The CaO content of Fo89–91 olivine is negatively correlated with the Al2O3 content of enclosed spinel (9–15 wt.%) and positively correlated with the CaO/Al2O3 ratios of melt inclusions (0.9–1.5). Major and trace element patterns of melt inclusions are similar to that of the host rock, indicating that the magma could have formed by accumulation of small batches of melt, with compositions similar to the melt inclusions. The liquidus temperature of the magma was  1275 °C, and its oxygen fugacity ≤ FMQ + 2.5. Correlations between K2O, Zr, Th and LREE in the melt inclusions are interpreted to reflect variable degrees of melting of the source; correlations between Al2O3, Na2O, Y and HREE are influenced by variations in the mineralogy of the source. The melts probably formed from a water-poor, clinopyroxene-rich mantle source.  相似文献   

7.
Three types of zircon coexist in an unusual lower crustal xenolith from the Valle Guffari diatreme (Hyblean Plateau, Sicily): igneous Type 1 (near-euhedral, weakly zoned; Ce/Ce > 1); partially recrystallised Type 2 (ovoid, structureless; weak Ce anomaly); hydrothermal Type 3 (sugary, spongy-textured, probably related to F-rich aqueous fluids). U–Pb dating by LAM-ICPMS, supported by in situ Hf-isotope analysis, suggests that both Type 1 and Type 2 zircons were originally Archean (ca 2.7 Ga), though many of these grains have experienced severe Pb loss. The U–Pb ages of the hydrothermal zircons cluster around 246 Ma, interpreted as the timing of the hydrothermal event. Their εHf (+ 8.5 to − 1.2) indicates the mixing of old crustal components and material from a juvenile source.

In situ Os-isotope analyses of sulfides hosted in peridotite xenoliths from Valle Guffari show Paleoproterozoic–Archean TRD minimum ages, corresponding to the age of the oldest zircon grains in the crustal xenolith. Other peaks of TRD ages suggest that multiple metasomatic events have affected the lithospheric mantle.

These observations suggest that the lower crust and the upper part of the lithospheric mantle beneath the Hyblean Plateau represent the northernmost portion of the African Plate. These two units have coexisted since at least late Archean time, and have remained linked through several episodes of crustal modification, including the Permo-Triassic hydrothermal event, which was probably related to the onset of rifting in the Ionian Basin.  相似文献   


8.
Mantle xenoliths from the Olot volcanic district (NE Spain) comprise a bi-modal suite consisting of protogranular spinel lherzolites (cpx 12–14%) sometimes with pargasitic amphibole, and highly refractory spinel harzburgites (cpx ≤ 1%) with coarse-grained granular textures. The lherzolites range from slightly depleted to moderately LREE-enriched with flat HREE patterns between 1.5 and 2.7 × chondrite (Ch). In contrast, the harzburgites are extremely depleted in HREE (down to 0.2 × Ch) and strongly LREE-enriched (LaN/YbN = 12.3–17.2). LA-ICP-MS analyses of clinopyroxene and amphibole of the lherzolites highlight variable degrees of LREE depletion (HREE up to 13 × Ch, LaN/YbN down to 0.01), with the exception of a single sample in which both clinopyroxene and amphibole are LREE-enriched (LaN/YbN up to 19). In the harzburgites, clinopyroxenes display totally different REE distributions, characterized by extreme HREE depletion (down to 0.4 × Ch) and upward convex positively fractionated middle-light REE patterns (NdN/YbN up to 20.7 × Ch; LaN/YbN up to 12 × Ch). Sr–Nd–Hf isotopic data for both whole-rocks and cpx separates, coherently indicate depleted mantle (DM) compositions for the lherzolites (εSr = − 15 to − 26, εNd = + 9 to + 17, εHf = + 18 to + 68) and enriched mantle (EM) compositions for the harzburgites (εSr = − 10 to + 36, εNd = − 1 to − 6, εHf = + 3 to + 8). Modelling of the clinopyroxene REE data and isotopic systematics suggest that some lherzolites were affected by pre-Paleozoic (0.6–1 By) low-degree partial melting processes, while others probably reflect some extent of refertilization of the mantle protolith by metasomatizing melts similar to the Triassic rift-related tholeiites reported from several Pyrenean localities. The harzburgites represent extreme refractory residua, resulting from a complex depletion history due to multistage melt extraction as often observed in the cratonic mantle. The distinctive REE patterns and isotopic systematics of their clinopyroxenes suggest that the harzburgites were formed by the interaction of an ultra-depleted peridotite matrix with highly alkaline basic melts similar in composition to the Permo-Triassic alkaline lamprophyres which are widespread within the Iberian plate. Lherzolites possibly represent younger lithosphere (accreted asthenosphere?) up-lifted and juxtaposed to the older subcontinental lithospheric mantle (harzburgites) during the post-Variscan rifting of the Iberian margin. These two genetically different, but adjoining, mantle domains intimately mingled along the northern Iberian margin during the subsequent plate convergence processes, leading to the close association of harzburgites and lherzolites observed in the Olot mantle xenoliths and in some Pyrenean peridotite massifs.  相似文献   

9.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


10.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


11.
We examined seven ultramafic xenoliths from 1~3 Ma alkali olivine basalt reefs near the Eurasian continent and one sample of the host alkali basalt to identify the mantle wedge material and to constrain the origin and evolution of mantle beneath SW Japan. Six xenoliths are from Kurose and one xenolith is from Takashima, northern part of the Kyushu islands, SW Japan. The Sr and Nd isotopic ratios vary from 0.70416 to 0.70773 and from 0.51228 to 0.51283, respectively. The Kurose and Takashima xenoliths have higher Sr isotopic ratios and lower Nd isotopic ratios than those of the peridotite xenoliths from the other arc settings such as Simcoe and NE Japan.

The Kurose xenoliths have less radiogenic Os isotopic ratios (187Os/188Os = 0.123–0.129) than the primitive upper mantle (PUM) estimate and limited variation compared to the other arc xenoliths. Their Os isotope compositions are rather similar to the ultramafic xenoliths from NE and east China. In addition, the samples of the Kurose and Takashima xenoliths plot along a mixing line between ultramafic xenoliths from SE and NE China and a slab component in Sr–Nd–Os isotopic space. Our results suggest that fragments of continental lithospheric mantle from the China craton may exist beneath Kurose and Takashima after the Sea of Japan expansion when the Japanese islands were rifted away from the Eurasian continent during Miocene. Later magmatism due to subduction of the Philippine Sea Plate beneath the SW Japan arc around 15 Ma ago may have introduced fluids or melts derived from slab component, interpreted to be oceanic sediments rather than altered oceanic crust, that possibly modified the original composition of the lithospheric mantle sampled by the peridotite xenoliths from Kurose and Takashima.  相似文献   


12.
Here new mineralogical data is presented on the occurrence of K-feldspar in granulite-facies metagabbronorite xenoliths found in recent alkaline lavas from Western Sardinia, Italy. The xenoliths originated from the underplating of variably evolved subduction-related basaltic liquids, which underwent cooling and recrystallisation in the deep crust (T = 850–900 °C, P = 0.8–1.0 GPa). They consist of orthopyroxene + clinopyroxene + plagioclase porphyroclasts (An = 50–66 mol%) in a granoblastic, recrystallised, quartz-free matrix composed of pyroxene + plagioclase (An = 56–72 mol%) + Fe–Ti oxides ± K-feldspar ± biotite ± fluorapatite ± Ti-biotite. Texturally, the K-feldspar occurs in a variety of different modes. These include: (1) rods, blebs, and irregular patches in a random scattering of plagioclase grains in the form of antiperthite; (2) micro-veins along plagioclase–plagioclase and plagioclase–pyroxene grain rims; (3) myrmekite-like intergrowths with Ca-rich plagioclase along plagioclase–plagioclase grain boundaries; and (4) discrete anhedral grains (sometimes microperthitic). The composition of each type of K-feldspar is characterized by relatively high albite contents (16–33 mol%). An increasing anorthite content in the plagioclase towards the contact with the K-feldspar micro-vein and myrmekite-like intergrowths into the K-feldspar along the plagioclase–K-feldspar grain boundary are also observed. Small amounts of biotite (TiO2 = 4.7–6.5 wt.%; F = 0.24–1.19 wt.%; Cl = 0.04–0.20 wt.%) in textural equilibrium with the granulite-facies assemblage is present in both K-feldspar-bearing and K-feldspar-free xenoliths. These K-feldspar textures suggest a likely metasomatic origin due to solid-state infiltration of KCl-rich fluids/melts. The presence of such fluids is supported by the fluorapatite in these xenoliths, which is enriched in Cl (Cl = 6–50% of the total F + Cl + OH). These lines of evidence suggest that formation of K-feldspar in the mafic xenoliths reflects metasomatic processes, requiring an external K-rich fluid source, which operated in the lower crust during and after in-situ high-T recrystallisation of relatively dry rocks.  相似文献   

13.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

14.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

15.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

16.
S. S. Schmidberger  D. Francis 《Lithos》1999,48(1-4):195-216
The recently discovered Nikos kimberlite on Somerset Island, in the Canadian Arctic, hosts an unusually well preserved suite of mantle xenoliths dominated by garnet–peridotite (lherzolite, harzburgite, dunite) showing coarse and porphyroclastic textures, with minor garnet–pyroxenite. The whole rock and mineral data for 54 Nikos xenoliths indicate a highly refractory underlying mantle with high olivine forsterite contents (ave. Fo=92.3) and moderate to high olivine abundances (ave. 80 wt.%). These characteristics are similar to those reported for peridotites from the Archean Kaapvaal and Siberian cratons (ave. olivine Fo=92.5), but are clearly distinct from the trend defined by oceanic peridotites and mantle xenoliths in alkaline basalts and kimberlites from post-Archean continental terranes (ave. olivine Fo=91.0). The Nikos xenoliths yield pressures and temperatures of last equilibration between 20 and 55 kb and 650 and 1300°C, and a number of the peridotite nodules appear to have equilibrated in the diamond stability field. The pressure and temperature data define a conductive paleogeotherm corresponding to a surface heat flow of 44 mW/m2. Paleogeotherms based on xenolith data from the central Slave province of the Canadian craton require a lower surface heat flow (40 mW/m2) indicating a cooler geothermal regime than that beneath the Canadian Arctic. A large number of kimberlite-hosted peridotites from the Kaapvaal craton in South Africa and parts of the Siberian craton are characterized by high orthopyroxene contents (ave. Kaapvaal 32 wt.%, Siberia 20 wt.%). The calculated modal mineral assemblages for the Nikos peridotites show moderate to low contents of orthopyroxene (ave. 12 wt.%), indicating that the orthopyroxene-rich mineralogy characteristic of the Kaapvaal and Siberian cratons is not a feature of the cratonic upper mantle beneath Somerset Island.  相似文献   

17.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   


18.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

19.
We have examined Re, Platinum-Group Element (PGE) and Os-isotope variations in suites of variably fractionated lavas from Kohala Volcano, Hawaii, in order to evaluate the effects of melt/crust interaction on the mantle isotopic signature of these lavas. This study reveals that the behavior of Os and other PGEs changes during magma differentiation. The concentrations of all PGEs strongly decrease with increasing fractionation for melts with MgO < 8 wt.%. Fractionation trends indicate significantly higher bulk partition coefficients for PGEs in lavas with less than 8 wt.% MgO (DPGE = 35–60) when compared to values for more primitive lavas with MgO > 8 wt.% (DPGE ≤ 6). This sudden change in PGE behavior most likely reflects the onset of sulfur saturation and sulfide fractionation in Hawaiian magmas at about 8 wt.% MgO.

The Os-rich primitive lavas (≥ 8 wt.% MgO, > 0.1 ppb Os) display a narrow range of 187Os/188Os values (0.130–0.133), which are similar to values in high-MgO lavas from Mauna Kea and Haleakala Volcanoes and likely represent the mantle signature of Kohala lavas. However, Os-isotopic ratios become more radiogenic with decreasing MgO and Os content in evolved lavas, ranging from 0.130 to 0.196 in the shield-stage Pololu basalts and from 0.131 to 0.223 in the post-shield Hawi lavas. This reflects assimilation of local oceanic crust material during fractional crystallization of the magma at shallow level (AFC processes). AFC modeling suggests that assimilation of up to 10% upper oceanic crust could produce the most radiogenic Os-isotope ratios recorded in the Pololu lavas. This amount of upper crust assimilation has a negligible effect on the Sr and Nd-isotopic compositions of Kohala lavas. Thus, these isotopic compositions likely represent the composition of the mantle source of Kohala lavas.  相似文献   


20.
Mineralogical data, coupled with whole-rock major and trace element data of mafic xenoliths from two occurrences of the Egyptian Tertiary basalts, namely Abu Zaabal (AZ) near Cairo and Gabal Mandisha (GM) in the Bahariya Oases, are presented for the first time. Chemically, AZ basalts are sodic transitional, while those of GM are alkaline. In spite of the different petrographic and geochemical features of the host rocks, mafic xenoliths from the two occurrences are broadly similar and composed essentially of clinopyroxene, plagioclase, alkali feldspar, and Fe–Ti oxides. The analytical results of host rocks, xenoliths and their minerals suggest that the xenoliths are cognate to their host magmas rather than basement material. The mafic xenoliths are olivine-free and contain alkali feldspar contrary to the phenocryst assemblage of the host rocks, confirming that they are not cumulates from the host magma. The geochemical and mineralogical characteristics show that the precursor magmas of these xenoliths are more fractionated and possibly contaminated compared to those of the host rocks. Estimated crystallization conditions are  1–3 kbar for xenoliths from both areas, and temperature of  950–1100 °C vs. 920–1050 °C for AZ and GM, respectively. These cognate xenoliths probably crystallized from early-formed, highly-fractionated anhydrous magma batches solidified in shallow crustal levels, possibly underwent some AFC during their ascent, and later ripped-up during fresh magma pulses. The xenoliths, although rare, provide an evidence for the importance of crystal fractionation at early evolution of the Egyptian Tertiary basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号