首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this work is to investigate the influence of pH and the metal:humic substances (HS) ratio on HS complexing capacity and the stability and solubility of metal–HS complexes in solution. We selected four HS with different physicochemical properties and studied their interaction with Cu(II), Zn(II) and Fe(II) at different pH and metal:HS ratios. The selected HS were a humic acid and a whole humic extract (containing the humic and fulvic acids) extracted from black peat, and a fulvic acid and a whole humic extract extracted from a compost of grape solid wastes.Our results showed that HS complexing capacity significantly varied as a function of pH, thus indicating the influence of both functional group ionisation and molecular conformation on this property. As was expected, total acidity affected the complexing capacity of the selected HS.The results related to stability and complexing capacity indicated the possible presence of two binding patterns, one at acid-neutral pH probably involving carboxylates, and another at alkaline pH probably involving carboxylates and phenolic groups. The relationship between these binding patterns and the strength of the binding process varied according to the complexed metal.Complex solubility was greatly affected by the ratio between the concentration of free ionised functional groups and the molecular weight in the HS studied.  相似文献   

2.
Humic substances exposed to solar light play the role of photosensitizers in aquatic photochemical processes, generating free radicals during UV and visible light irradiation. During irradiation, high molecular weight structures are destroyed and low molecular weight constituents are formed. Alterations of the humic acids metal binding capacity due to their photochemical alterations occur. The present work reports controlled laboratory experimental results on the binding of copper by a certified purified peat humic acid (PPHA) before and after irradiation in a laboratory scale photoreactor. A reference curve of copper binding by photochemically unaltered humic acid was experimentally determined as a function of solution pH by potentiometric titrations. The experimental data series correspond to a pH range from 3 to 8.5, necessary for the simultaneous consideration of complexation and metal species solubility contribution in the obtained results. From the experimental results, it was apparent that copper is strongly bound by humic acid even at the acidic range of pH where the percentage of copper bound reached 60 and 95% at pH values of 3.5 and 5.5, respectively. During 12 and 20 days of irradiation experiments, humic acid photoalteration was experimentally monitored by a size exclusion chromatography system (HPLC-SEC). From the potentiometric titrations of the irradiated humic acid solutions by a copper selective electrode, it was apparent that the copper binding capacity of photoaltered humic acid solutions was significantly reduced for pH values up to 6.  相似文献   

3.
Humic acid adsorption onto the bacterial surface of Bacillus subtilis was measured with and without Cd, as a function of pH and humic–bacteria–Cd ratios. These experiments tested for the existence of ternary interactions in a bacteria–humic–metal system. We determine both the effects of humic acid on the bacterial adsorption of Cd, as well as the effects of the aqueous metal cation on the bacterial adsorption of humic acid. The presence of Cd does not affect the extent of humic acid adsorption onto the bacterial surface, indicating that there is no competition for sorption sites between humic acid and Cd under the experimental conditions, and that changes in the charging properties of the bacterial surface, as a result of the Cd adsorption, are not significant enough to affect humic acid adsorption.

The presence of humic acid does diminish Cd adsorption onto the bacterial surface, suggesting the presence of an aqueous Cd–humate complex under mid to high pH conditions. However, we also observe that the solubility of humic acid is unaffected by the presence of aqueous Cd. This apparently inconsistent behavior of an aqueous Cd–humate complex affecting Cd adsorption but not affecting humic acid solubility is not observed with simpler ionizable organic molecules. We propose that the solubility of humic acid is controlled by the solubility of a less soluble fraction of the acid. Cd forms an aqueous complex with the more soluble fraction of humic acid and there is no interdependence between the aqueous activities of the more and less soluble fractions. That is, the solubility of one humic acid fraction is unaffected by the presence of an aqueous Cd–humate complex involving another humic acid fraction. These experimental results constrain the relative importance of surface ternary and aqueous metal–humate complexes on the bacterial adsorption of both humic acid and metal cations.  相似文献   


4.
A review with 227 references of the title subject is presented. It is divided into two main sections, viz., nature and properties of humic matter, and water—metal—sediment interactions.The first section deals with the essential properties of organic matter which occurs naturally in drainage sediments and waters. Discussion of the basic molecular structure of humic and fulvic acids is followed by some details of the chemical nature of functional groups within these structures which are important in metal-ion adsorption and complexing reactions which these materials can undergo. Information is also presented for colloidal and polyelectrolyte properties, complexation properties, and finally a summary discussion of metal-ion—humic-acid, metal-ion—fulvic-acid stability constants for both single ligand and mixed ligand systems completes the section.The second section comprises discussions of some specific aspects of interactions between metals, sediments and waters, including metal and organic speciation studies; sorption interactions between organic matter, clays and humic acids; chemical reaction between humic acids, heavy-metal minerals, clays and other silicate minerals; metal-ion adsorption—desorption studies, oxidation—reduction reactions between metal ions and humic acids; effects of sulphide ion on some of the above interactions and finally a summary of some relevant field geochemical dispersion studies.This second section describes both laboratory and field studies for each aspect.  相似文献   

5.
Humic acids isolated from marine sediments were found to be effective in absorption of various metal ions through chelation, cation exchange and surface adsorption. The quantities of metal ions complexed varied from 40 to 205 mg/g of organic matter. In the presence of equal concentrations of Co, Cu, Mn, Ni and Zn in the reaction media, humic acid and peatmoss, a rich source of humic compounds, showed preferential absorption for Cu. Copper constituted more than 50% of the metal ions complexed by organic matter. As compared with the other metal ions, its bonding strength was very firm because it could not be displaced by ferric ion or cation exchange reagents.Peatmoss, a rich source of humic acid, was found to absorb significant quantities of various metal ions. Under laboratory conditions each kg of peat absorbed about 1500 mg of various metal ions from solutions containing equal concentrations of Co, Cu, Mn, Ni and Zn. However, in the field trials with sea water, absorption of metals was limited to Zn (28.7 mg/kg), Cu (3.66 mg/kg) and Fe (2.0 mg/kg). Under-saturation of sea water for transition metals and super-saturation for alkali and alkaline earth metals appears to be a bottleneck in the effective utilization of peat as a means of recovery of metals from sea water.  相似文献   

6.
The sedimentary humic acid or its acid-hydrolysate, consisting of various amino acids, was found effective in dissolving unusually large quantities of metals (up to 682 mg/g of organic matter) from their insoluble salts. The presence of humic acid in the reaction media which had favorable conditions for the precipitation of metals as carbonates, hydroxides or sulfides, prevented the formation of insoluble metal salts. Infrared analysis suggests that the metals added to various anionic systems and humic acid do not react with the anion. The most likely mechanism of reaction appears to be a complex formation between metals and organic matter which keeps the metal in solution.The enhanced solubility and consequent decrease in precipitation of metals under the influence of humic compounds, as evidenced in these studies should play a leading role in the accumulation of metals in sedimentary deposits.  相似文献   

7.
A coal-based thermal power plant is situated on the bank of the Pandu River, which is a tributary to the Ganges near Kanpur. River sediments downstream from the ash pond outfall are contaminated by fly ash. In order to establish the role of soils and sediments in retaining fly ash-derived heavy metals, copper was investigated as a model metal. A maximum concentration of 70 ppm Cu could be leached from the fly ash, confirming that it is a major source of this metal. Soil samples and river sediments were examined for Cu adsorption in the natural state as well as after treatment with H2O2, EDTA, and H2O2 followed by EDTA. The organic fraction of the samples was determined, and it had a major control on removal of Cu from a solution with 10–4 M initial concentration. Further characterization of organic matter indicated that with reference to natural samples, the humic acid fraction had a copper enrichment factor in the range 9.1–15.1. The factor for fulvic acids, in contrast, was between 3.5 and 5.5. This leads to the conclusion that river deposits rich in humic acids would withstand relatively high metal loads. Only when the metal input exceeds the maximum retention potential, would the metal be fractionated into the aqueous phase and act as a potential biocide.  相似文献   

8.
The sorption of cadmium and humic acids from aqueous solutions using surface-modified nanozeolite A has been investigated under various examination conditions. The morphology of untreated and treated nanozeolite was studied under scanning electron microscope and transmission electron microscope. Isotherms of cadmium adsorption onto surface-modified nanozeolite A were studied at different pH, solid to liquid ratio, adsorbate concentration and interaction time. Kinetic and equilibrium studies were conducted and the equilibrium data have been analyzed using Langmuir and Freundlich isotherm models. The study revealed that experimental results were in agreement with the Freundlich model. The Langmuir monolayer adsorption capacity was found to be 1666.67 g cadmium and 6.75 g humic acid per gram of modified nanozeolite A, which is higher than that of reported value for other zeolites. The sorption ability was enhanced by surface modification and reduction in size and enabled the zeolite to adsorb cadmium. The adsorption of cadmium and humic acid on nanozeolite was found to be the highest at pH 6 and 3, respectively. Results showed that solid to liquid ratio and pH are the most important factors for cadmium and humic acid removal, respectively. Effect of competitive ions was studied and results showed that there is no competition between cadmium and humic acid sorption and presence of these ions.  相似文献   

9.
Complexation of metal ions by organic matter is frequently considered to play a part in metal ion dissolution in natural waters. A field study of a relatively unperturbed stream, high in organics, associates this with the fraction related to soil organic acids (humic acids). The association might have two origins. The first is complexation. However, well known sequences of complexing tendency do not predict the behaviour. A better theory uses the additional factor of the reducing capacity of dissolved organic matter toward Fe(III) and Mn(IV).  相似文献   

10.
Cation exchange capacity measurements, performed before and after removal of humic acid from Narragansett Bay sediments, indicate that low concentrations of these organic substances strongly influence the ability of the sediment to react with metal ions. Atomic absorption and spectrophotometric methods allow quantitative determination of the extent of reaction between a naturally occurring humic acid and iron in artificial seawater. Humic acid-iron complexes are formed whose solubilities depend on the humic acid-iron ratio used in the experiment. This study suggests that humic acid is a transporting agent for trace metals in a marine environment.  相似文献   

11.
Humic acid extracted from a podzolic soil developed under Eucalyptus delegatensis and Pteridium aquilinum in northwestern Tasmania exhibits very strong solvent activity towards a number of minerals and metals. Aqueous solutions (0.1 per cent w/v) of this acid acting for 24 hours on mineral grains ranging in size from 297 to 590 μ, extracted varying amounts of metal. Chalcopyrite yielded 140 μg Cu whereas chalcocite released 15,000 μg Cu. Some correlation is found between relative bond strengths of sulphides and their degradation by humic acids. For example, galena is far less stable than sphalerite. Haematite and pyrolusite are quite vulnerable to humic acid attack and this may be a factor in the lack of development of extensive gossans over mineralization in western Tasmania during the current erosional cycle. Metals are particularly strongly attacked with a maximum release of 291,000 μg Pb in 24 hours. Contrary to earlier findings, Ag and Au were found to release 400 μg and 20 μg respectively of metal in a period of 6 weeks.Humic acid extracted from soils below other vegetation types in northwestern and western Tasmania are all active in mineral degradation. The variable effect of the acids is possibly the result of overall differences in complexing sites active under the conditions of experimentation and selective complexation. Several examples of minor soil organic compounds show no greater activity than humic acids and on the basis of their very low content in the soils studied, they are considered inferior to the latter as agents of weathering. Many metal humates display low solubility in water, but they are readily mobilized in the presence of humic acids. Humic acids developed under varying vegetation in a cool temperate climate are potentially very powerful solvents in the weathering cycle. Their ability to mobilize precipitated metal humates suggests that classical concepts of relative metal mobility may need modification in environments where appreciable concentrations of these substances are found.  相似文献   

12.
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH3COO) or strong (i.e., ) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as “truly” dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., “colloidal” HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).  相似文献   

13.
Interactions of copper, organic acids, and sulfate in goethite suspensions   总被引:1,自引:0,他引:1  
Sorption of copper and sulfate onto goethite (-FeOOH) in aqueous solution is examined in Cu---SO4 binary-sorbate systems and in Cu-SO4-organic acid (either phthalic acid or chelidamic acid) ternary-sorbate systems. Compared to single-sorbate systems, sorption of Cu onto goethite was enhanced at low pH values in the presence of sulfate. Sorption data for Cu and SO4 in Cu---SO4 binary-sorbate systems were described with the Generalized Two Layer Model by proposing formation of a Cu---SO4 ternary surface complex. Addition of sulfate to a Cu-phthalic acid binary sorbate system had little effect on Cu sorption. However, addition of sulfate to Cu-chelidamic acid binary-sorbate systems resulted in significant reduction of Cu sorption at low pH values, primarily due to competition for surface sites between sulfate and Cu-chelidamic acid ternary surface complexes. While organic acids such as humic substances can potentially influence sorption of metal ions, results from this study suggest that the extent of such influence may be strongly dependent on the presence of other sorbing anions, such as sulfate. Sorption of Cu and SO4 in Cu---SO4-organic acid ternary-sorbate systems was predicted reasonably well, based on surface reactions and equilibrium constants derived from fitting of sorption data from single- and binary-sorbate systems. These modeling results provide a validation of the extrapolation of sorption from simple systems to multicomponent systems through surface complexation modeling.  相似文献   

14.
The potential of high resolution ultrasonic analysis (HRUS) in humic acid colloidal properties research has been demonstrated. Sodium salts of humic acids from soil and lignite showed similar behaviour, supporting the hypothesis that, at both neutral and alkaline pH, they aggregate from very low concentration. The same conclusion can be reached for solutions at high ionic strength. We tried to apply the same procedure as used for the study of micellization and determination of critical micelle concentration of common surfactants. As expected, our experiments did not show the same break as demonstrated on the HRUS records for sodium dodecyl sulfate, at least in the range of measured concentration (i.e. from 0.001 up to 10 g L−1). The colloidal state of humic acids in aqueous solution is very sensitive to the presence of other, both charged and neutral, molecules. Aggregation of humic acids can be disturbed or promoted, depending on the concentration, by electrostatic or other weak interactions with extraneous molecules. Structures of varying mechanical strength (rigidity) can be formed in solutions of the same components but at different concentration. Such behaviour reflects mechanisms which occur during the sequestration of hydrophobic organic compounds and has several implications for the protection/transportation of labile structures and contaminants which are hypothesized to be encapsulated within hydrophobic pockets of soluble humic aggregates.  相似文献   

15.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

16.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

17.
A study has been made of solid and solution electron paramagnetic resonance (EPR) spectra of humic acids from different horizons in a podzolic soil. Hyperfine splitting was observed in the solution spectra of humic acids from all horizons and depended on the strength of alkali and the period of dissolution. The upper organic horizons L, F and O1 contained humic acids with some spectral characteristics in common with lignin. Humic acid from the lower horizons showed different spectra. At least 5 different radical signals were present.  相似文献   

18.
Covalent and non-covalent interaction of proteinaceous materials in soils and sediments has been suggested as an important mechanism for immobilizing nitrogen in numerous types of environments. In a previous study (Hsu P.-H., Hatcher, P.G., 2005. New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: A means for preservation. Geochimica et Cosmochimica Acta 69, 4521–4533), we provided molecular evidence for covalent, as well as non-covalent, bonding between 15N-labeled peptides and humic acid molecules using the 2D HSQC (heteronuclear single quantum coherence) NMR technique. In this report, we examine the influence of aromaticity and aliphaticity of peptides and humic materials on these covalent and non-covalent interactions. We use 2D NMR techniques to evaluate bonding interactions of 15N labeled peptides, having different aromatic and aliphatic properties, with three humic acids that vary in degree of aromaticity. The peptide containing primarily aromatic amino acid residues is observed to form covalent and non-covalent bonds with mainly aromatic-rich humic acids. The peptide composed of aliphatic amino acid residues shows, on the other hand, only bonding interactions with aliphatic-rich humic acids. These observations provide the first direct molecular evidence that aliphatic functional groups are involved in bonding with proteinaceous materials. The process may play an important role in sequestration of proteinaceous materials in sedimentary systems such as marine systems where the humic materials are mainly aliphatic in nature.  相似文献   

19.
The role of lipid components in the aggregation of several humic acids isolated from different sources was investigated using surface tensiometry. A combination of aqueous alkaline and organic solvent extractions was used to isolate two humic-like fractions (HA1 and HA2) and one lipid-like fraction from each humic acid. Fraction HA1 represents approximately two-thirds of the total organic carbon of the original humic acid and under alkaline conditions is a weak surfactant that lowers the surface tension of water by only a small amount. The HA2 fraction represents up to one-third of the humic acid and significantly lowers the surface tension of water. It is also intimately associated with the lipid fraction. Unlike the original humic acid samples, HA2 does not show micelle-like aggregation over the concentration range studied. Aggregate formation is discussed as an emergent characteristic that results from the interaction of the humic acid’s components with the lipid components serving a facilitative role.  相似文献   

20.
《Applied Geochemistry》2006,21(9):1455-1468
Cyclic base extraction is a commonly used method for the isolation of humic acids from soils and sediments. However, every extract may differ in chemical composition due to the complex nature of humic acids. To better understand the chemical composition of each extract, the heterogeneous property of humic acids and their speciation in environmental samples, eight fractions of humic acids were obtained in the present work by progressive base-extraction of Pahokee peat, and their chemical composition was characterized using two complementary pyrolytic techniques, namely conventional pyrolysis and methylation pyrolysis (TMAH) GC/MS. These quick and effective procedures provide an insight into the structure of macromolecules. The work shows that the lignin-derived aromatic compounds are major components of pyrolysates in both pyrolytic techniques, while aliphatic compounds originating from microorganisms and plants are minor components. Other compounds derived from proteins and carbohydrates at lower concentrations were also detected. Fatty acids were found in the pyrolysis without methylation, indicating their association with humic acid in a free state. These compounds are different from those formed during pyrolysis with in situ methylation, where fatty acids are generally believed to be the cleavage products of carboxylic groups bound to humic acids. A relative decreasing abundance of aromatic components and increasing abundance of aliphatic components in the pyrolysates as the peat was progressively extracted was also observed in this work, suggesting that the extraction of more hydrophobic aliphatics may be delayed in comparison to the aromatic components. Speciation and origin differences may also be important particularly considering that the contribution from lignin organic matter decreased with extraction number, as the contribution of microbial organic matter increased. The observed change in chemical composition with the extracted fractions indicates again that the humic acid distribution and their speciation are complex, and complete extractions are necessary to obtain a representative humic acid sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号