首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diurnal variation in the vertical structure of the raindrop size distribution(RSD) associated with stratiform rain at Kototabang, West Sumatra(0.20°S, 100.32°E), was investigated using micro rain radar(MRR) observations from January 2012 to August 2016. Along with the MRR data, the RSD from an optical disdrometer and vertical profile of precipitation from the Tropical Rainfall Measuring Mission were used to establish the microphysical characteristics of diurnal rainfall.Rainfall during 0000–0600 LST and 1800–2400 LST had a lower concentration of small drops and a higher concentration of large drops when compared to rainfall during the daytime(0600–1800 LST). The RSD stratified on the basis of rain rate(R) showed a lower total concentration of drops and higher mass-weighted mean diameter in 0000–0600 LST and1800–2400 LST than in the daytime. During the daytime, the RSD is likely governed by a riming process that can be seen from a weak bright band(BB). On the other hand, during 0000–0600 LST and 1800–2400 LST, the BB was stronger and the rainfall was associated with a higher concentration of midsize and large drops, which could be attributed to more active aggregation right above the melting layer with minimal breakup. Diurnal variation in the vertical profile of RSD led to a different radar reflectivity(Z)–R relationship in the rain column, in which Z during the periods 0000–0600 LST and1800–2400 LST was larger than at the other times, for the same R.  相似文献   

2.
基于典型城市站太原站2018年3月—2019年2月的大气CO2在线观测资料,利用筛分法(Meteorological filtering method, MET)和黑碳示踪法(Black Carbon tracer, BC)进行本底/非本底的筛分,得到了本底浓度的变化特征。结果表明,太原大气CO2浓度季均值冬季最高,夏季最低;不同季节呈“单峰型”日变化特征,日振幅均在26.0×10-6以上;4个季节CO2浓度与地面风速存在显著负相关关系;CO2浓度抬升区域主要受当地工业布局的影响,最大抬升幅度在秋季达17.4×10-6;使用气象筛分法(MET)得到年均本底浓度为(431.4±19.9)×10-6,人为排放等对其影响为23.5×10-6,年振幅比同纬度其它本底站大,为34.5×10-6;黑碳示踪法(BC)得到冬季季均本底浓度为(445.0±22.9)×10-6,比MET筛...  相似文献   

3.
锡林浩特草原CO2通量特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用锡林浩特国家气候观象台开路涡度相关系统、辐射土壤观测系统,测得的长期连续通量观测数据,对锡林浩特草原2009—2011年期间的CO2通量观测特征进行了分析。结果表明:CO2通量存在明显的年际、季节和日变化特征。3 a中NEE年际变率达到200 g·m-2,季节变率最大达到460 g·m-2,日变化幅度生长季最大达到0.25 mg·m-2·s-1。通过不同时间尺度碳通量与温度、水分、辐射等环境因子的分析,认为CO2通量日变化主要受温度和光合有效辐射影响,而季节变化和年变化主要受降水和土壤含水量的影响。降水强度及时间分布是制约牧草CO2吸收的关键因素,大于15%的土壤含水量有利于促进牧草生长。  相似文献   

4.
The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m-3, with a maximum monthly mean concentration of 827 mg m-3 in January and a minimum value of 679 mg m-3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m-2 s-1, with a maximum monthly mean flux of 0.91 mg m-2 s-1 in January and a minimum value of 0.19 mg m-2 s-1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700-0900 LST and a minimum at 1400-1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700-0900 LST and 2100-2400 LST, and two minima at 1100-1500 LST and 0300-0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.  相似文献   

5.
利用瓦里关和上甸子大气本底站观测的月平均CO2浓度数据对GOSAT卫星反演的CO2浓度数据进行验证,结果表明GOSAT产品与台站观测数据有较好的一致性.利用2009年6月—2011年5月GOSAT反演的CO2浓度数据,分析了江苏地区CO2浓度的时空变化特征,结果表明:1)975 hPa高度层CO2浓度高于850 hPa高度层,CO2浓度的水平变化要小于垂直变化;2)在季节变化上,CO2浓度冬季最高,夏季最低,这可能与植被光合作用的强弱变化有关;比较前后两年的CO2浓度数据,夏季和秋季的增速较快,冬季和春季的增速较慢;3)在日变化上,发现徐州和南京站02时CO2浓度最高,14时CO2浓度最低,这可能也与植被光合作用的强弱有关.  相似文献   

6.
An eddy covariance system using a closed-path CO2analyser was constructed for long-term CO2flux measurements above a forest, and its total frequency response was valuated experimentally. The amplitude and phase responses of the system wereexamined through a preliminary test, in which a prescribed pattern of CO2fluctuation was input to the system. The result showed that the amplitude of the output from the system was attenuated as frequency increased, with a half-power frequency of 0.3 Hz. The phase was delayed by the air sampling through a long tube, but the delay in phase decreased asfrequency increased. We then presented a new technique for the correction of flux loss due to the inadequate system response for the eddy covariance measurements of CO2 flux. Using the present system and the correction technique, diurnal variations in CO2 flux were measured over a temperate deciduous forest on three days in 1997. The results were compared with the CO2fluxes measured with a fast response open-path gas analyser. The CO2fluxes from the closed-path system agreed with those from the open-path system after the Webb, Pearman and Leuning correction was made for the latter. In the present test over a forest, the contribution of the frequency-response correction to the CO2fluxes was small and its averaged percentage was only 3%in the daytime. However, the percentage would likely increase, if the system were applied to a shorter vegetation site where high frequency components are more important. The comparison confirmed that we can obtain correct measurements of CO2flux using the present closed-path system and the correction technique.  相似文献   

7.
珠海凤凰山地处北回归线以南,森林植被覆盖率达90%,植被类型为南亚热带常绿阔叶林群落,是岭南地区典型的城市或村庄周边的再生森林,我们选择在凤凰山麓森林冠层较为平缓的低矮坡地建立了陆-气相互作用和碳通量的观测铁塔塔站。本文详细介绍了观测塔的地理环境、初步的仪器布设和基本观测,并利用已获得的资料分析了旱季典型晴天主要观测量的日变化特征。太阳总辐射及其分光辐射和反射辐射的日变化都是比较常规的中午最高的对称结构;冠层接收到的长波辐射比向上长波辐射低;气温日变化的峰值比太阳辐射滞后,白天达到最高值前的气温是低层高于高层,达到最高值后到落日前气温陡然下降,夜晚的气温是低层低于高层。相对湿度凌晨最大,下午最小,夜晚是低层相对偏湿,白天正好相反;11月份,珠海地区盛行旱季的偏北季风,有明显的海陆风的作用,白天的海风较强,夜晚的陆风较弱;森林冠层向大气释放的感热和潜热的量值基本相当,潜热基本为正;感热白天为正,夜晚基本为负;森林冠层吸收的二氧化碳的最高值出现在午后,此时空气中水汽浓度达到最低,向大气释放的二氧化碳在日出后的清晨最大,此时空气中的二氧化碳浓度达到最大,同时空气密度也最大;由于森林冠层高、密度大,土壤湿度基本没有日变化;表层土壤温度日变化的振幅随土壤深度加深而变小,土壤热流的变化是下午高,清晨低。本文还发现了一些值得深入探讨的现象,需要以后根据充沛的资料分析论证。  相似文献   

8.
在“双碳”目标背景下,从国家层面到地方层面,区域、城市、行业企业都在制定和实施双碳目标行动计划。CO2模拟因其客观性和高时空分辨率等优势,在城市碳排放研究中深受重视。本研究以京津冀地区为研究区域,采用Picarro仪器高精度观测的2019—2020年CO2数据,利用WRF模式进行CO2传输模拟,分析了CO2浓度变化的季节特征,评估了模式在城区中心、城郊及背景3个观测站点的模拟效果,并对边界层高度及化石燃料碳排放等可能影响CO2浓度的因素进行了研究。3个观测站点分别为北京中国科学院大气物理研究所325 m气象塔观测站(北京站)、河北香河观测站(香河站)和上甸子区域本底观测站(上甸子站)。模拟结果表明:上甸子站优于香河站,香河站优于北京站,在冬季尤其明显;CO2浓度的高值区主要分布在城区、电厂和工业区,尤其是唐山、石家庄和邯郸地区,大量交通、工业排放导致CO2浓度明显上升,且高值区的范围在冬季最大;就日平均变化和日变化而言,边界层高度与CO2浓度存在相反变化趋势;3个站点的化石燃料碳排放(FFECO2)与近地面总CO2浓度存在正相关关系,冬春季的相关性高于夏秋季,且FFECO2的占比从大到小依次为北京站、香河站、上甸子站;CO2传输模拟的不确定性存在空间差异和季节变化。  相似文献   

9.
利用LI-8100开路式土壤碳通量系统测定龙王山森林土壤呼吸速率,研究北亚热带落叶阔叶林土壤呼吸速率的日变化和季节性变化规律.结果表明:北亚热带落叶阔叶林土壤呼吸速率在12—14时达到最大,与土壤温度变化基本一致;森林土壤呼吸速率随土壤温度的季节性变化而变化,在夏季土壤呼吸速率较高,在冬季土壤呼吸速率较低;土壤呼吸速率与土壤温度间存在着明显的指数关系,土壤呼吸温度敏感系数Q10为2.81.  相似文献   

10.
净生态系统碳通量(NEE)的计算对于准确模拟区域碳通量和大气CO2浓度的时空变化至关重要。本文利用中尺度大气-温室气体耦合模式WRF-GHG(Weather Research and Forecasting Model with Greenhouse Gases Module),对2010年7月28日至2010年8月2日期间影响长江三角洲地区大气CO2浓度及时空分布的各种过程进行了详尽模拟。结果表明,植被光合呼吸模型(VPRM)能模拟不同植被下垫面NEE的日变化;WRF-GHG模拟的大气CO2浓度日变化与观测相吻合,但低估了大气CO2浓度5~15 ppm(ppm表示10-6),这可能与人为排放源的低估、VPRM参数的不确定性以及气象场模拟的不准确性有关。太湖和植被覆盖较好的地区如浙江北部山区是该地区的主要碳汇,而城市为CO2的主要排放源。太湖和陆地生态系统对区域内碳循环起到一定的调节作用,减缓区域大气CO2浓度的升高。此外,局地气象条件如湖陆风对太湖周边地区大气CO2浓度有显著影响。  相似文献   

11.
利用GEOS-Chem全球三维大气化学传输模式,分析了北半球近地层CO2体积分数的时空变化特征及其成因。2006—2010年的5 a的模拟结果表明:北半球中纬度近地层CO2体积分数存在着两个高值中心,即亚洲东部和北美东北部。在季节尺度上,亚洲东部CO2体积分数最大值出现在春季,而北美东北区域CO2体积分数最大值出现在冬季;而两个地区的CO2体积分数最低值都出现在夏季。在年际尺度上,两个区域CO2体积分数的年际变率增幅明显高于北半球其它区域,且CO2体积分数高值出现时间的年际差异较大。另外,模拟分析发现北半球森林、农田、草原典型区域,所对应的CO2体积分数具有不同的季节变化特点,它们的CO2季节内变幅依次减小。进一步分析发现3种不同典型区域的CO2体积分数与叶面积指数(LAI)季节变化,具有很好的负相关性。可见陆地生态系统作为碳汇,对近地层CO2体积分数的季节变化具有重要的作用。而温度和降水是影响LAI的最重要的两个气象因子,它们与CO2体积分数季节变化存在内在联系,模拟结果表明北半球大部分陆地近地层CO2体积分数与温度、降水呈现显著的负相关。  相似文献   

12.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关.  相似文献   

13.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

14.
15.
Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal CO2 exchange rates.  相似文献   

16.
《Climate Policy》2013,13(1):71-88
Abstract

Recent analyses continue to modify our understanding of terrestrial carbon sinks. The sinks are large and variable enough to account for much of the variability in the growth rate of atmospheric CO2. They are distributed throughout both northern mid-latitudes and the tropics. Identification of the factors influencing an observed sink is extremely difficult; methods for attribution are reviewed. Although various ecological mechanisms (e.g. CO2 fertilization, nitrogen deposition, climatic variability) have been shown experimentally to have short-term effects on physiological processes controlling the amount of carbon in terrestrial ecosystems, it is unclear which of these mechanisms has been most important in the past 10–100 years and which will be most important in the future. The decades-long supposition that CO2 fertilization has been a major driver of terrestrial carbon uptake is being challenged. A major portion of the sink in the northern mid-latitudes (although probably not in the tropics) is a result of recovery from past changes in land use and management. To the extent that these direct human actions explain most of the current (and future) sink, attribution and thus accounting become more tractable, but the continued functioning of the sink is limited and largely dependent on deliberate actions (e.g. afforestation, sustainable forest management and preservation).  相似文献   

17.
Energy and CO2 fluxes are commonly measured above plant canopies using an eddy covariance system that consists of a three-dimensional sonic anemometer and an H2O/CO2 infrared gas analyzer. By assuming that the dry air is conserved and inducing mean vertical velocity, Webb et al. (Quart. J. Roy. Meteorol. Soc. 106, 85-100, 1980) obtained two equations to account for density effects due to heat and water vapour transfer on H2O/CO2 fluxes. In this paper, directly starting with physical consideration of air-parcel expansion/compression, we derive two alternative equations to correct for these effects that do not require the assumption that dry air is conserved and the use of the mean vertical velocity. We then applied these equations to eddy flux observations from a black spruce forest in interior Alaska during the summer of 2002. In this ecosystem, the equations developed here led to increased estimates of CO2 uptake by the vegetation during the day (up to about 20%), and decreased estimates of CO2 respiration by the ecosystem during the night (approximately 4%) as compared with estimates obtained using the Webb et al. approach.  相似文献   

18.
A basin-wide ocean general circulation model(OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO 2 using two different simulation approaches.The simulation(named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO 2,whereas the other simulation(named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO 2.The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon.The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB.The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific,except for the subtropical South Pacific.This,to large extent,leads to the difference in the surface anthropogenic CO 2 concentration between the two runs.The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850.This is probably not caused by dissolved inorganic carbon(DIC),but rather by a factor independent of time.In both runs,the rate of change in anthropogenic CO 2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO 2.  相似文献   

19.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

20.
Since April 1986, measurements of the CO2 concentration in the surface air have been conducted at the Meteorological Research Institure (MRI, 36°04 N, 140°07 E, 25 m above sea level) in Tsukuba, located 50 km northeast of Tokyo, Japan. The CO2 data measured over times between 11:00 Japan Standard Time (JST) and 16:00 JST (C N ) were considered to be representative of the air (within a few ppmv) in the planetary boundary layer. To evaluate the representative CO2 level on a spatial scale larger than that of the C N record, the CO2 data with hour-to-hour variation less than 1 ppmv were selected (C P ). Comparison of these data with those of Ryori (39°02 N, 141°50 E), a continental station operated by the Japan Meteorological Agency, indicates that the C P record provides a representative CO2 level in the air on spatial scales of at least a few hundred kilometers.The C N record allows an investigation of the internanual changes in photosynthesis/respiration against changes in climatological parameters. Within a small temperature anomaly (ca.±1 °C) respiration is sensitive to the temperature change, while photosynthesis is less sensitive. When the temperature anomaly is large, however, photosynthesis and respiration tend to be competitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号