首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Fecal contamination in the Seine River and its estuary was studied for the first time by rapid enzymatic methods in parallel with traditional enumerations on selective culture media. The study consisted of four sampling campaigns focused on a 450-km stretch including the Parisian area and presenting highly variable levels of fecal pollution. Enzymatic assays (based on the activity of the β-D-galactosidase and β-D-glucuronidase enzymes in total [TC] and fecal [FC] coliforms, respectively) were in good agreement with classical plate counts of TC and FC. Both methods reflected the strong impact of the wastewater discharge from the Parisian area and of the presence of a maximum turbidity zone (at the mouth of the estuary) on the abundance of fecal bacteria in the river. Downstream from the Parisian outfalls, enzymatic measurements probably detected enzymatically active but nonculturable bacteria disregarded by plate counts. Enzymatic measurements in the Seine River downstream from the Parisian area were used to estimate net disappearance rates of coliforms in the river, which were close to total mortality rates measured with a method based on bacterial DNA labeling with tritiated thymidine. The part of total mortality due to grazing by protozoa was also investigated by the thymidine method. Grazing activity was responsible for 47% to 99% of the mortality of coliforms in the river. Attachment of coliforms to suspended matter (SM) was another factor which could be important in controlling the dynamics of coliforms in the Seine River and particularly in its estuary. Results of filtration and decantation experiments suggested that a significant part of the coliforms can be linked to SM depending on the nature and concentration of the SM.  相似文献   

2.
The waters of the Seine river estuary, located in a highly anthropogenicized area in the northern part of France, are of poor microbiological quality; the concentrations of faecal bacteria usually exceed the European Union bathing and recreational water directives. The aim of the present study was to identify the main sources of the faecal pollution of the Seine estuary in order to help define priorities for management and sanitation efforts. Budgets of faecal coliform (FC) inputs to the estuary were established for various hydrological conditions. Main sources of FC were the outfalls of the treated effluents of the wastewater treatment plants (WWTPs) located along the estuary, the faecal bacteria brought in through the tributaries of the Seine estuary, and the faecal bacteria transported by the Seine river flow at the estuary entrance at Poses dam. In order to quantify these inputs, FC were enumerated during sampling campaigns conducted for various hydrological conditions in the Seine at the entrance of the estuary, in the tributaries close to their confluence with the estuary, and in the effluents of some WWTPs located along the estuary. The importance of the flux of FC transported by the Seine river flow at the estuary entrance at Poses dam decreased from 92% of the total FC input when the flow rate was high (717 m3 s−1) to 5% when flow rate was low (143 m3 s−1). The release of the domestic wastewaters of the large city of Paris located 120 km upstream from the entrance of the estuary was mainly responsible for this microbiological pollution. At low flow rates, the tributaries represent the most important source of FC (64–76% for flow rates of the Seine at Poses at approximately 150 m3 s−1), mainly from the Robec and Eure rivers. The treated wastewater of the WWTPs located along the estuary was the second source of FC for low flow conditions (19–30%); it was less important for high to intermediate flow rate conditions.  相似文献   

3.
Ecological processes driving the oxygen budget were investigated in the downstream part of the Seine River and its estuary. Phytoplankton and bacterioplankton production were measured along longitudinal profiles (11 to 17 stations) in a range of low discharges from 300 m3 s−1 in 1993 and 1995 to 140 m3 s−1 in 1996. Values representative of the water column were based on investigations carried out during two tidal cycles. Net primary production was invariably greatest in the freshwater estuary, from Poses to Rouen (from 500 to 1,000 μg C l−1 d−1 between PK 202 and 240) and decreased sharply downstream (from 10 to 25 μg c l−1 d−1 between PK 250 and 310). This decrease was mainly due to the deterioration of the light conditions with the increase in depth and suspended matter concentrations. Heterotrophic activity was maximum in the reach where primary production declined. Judging by the production:respiration ratio (P:R), the system appeared clearly heterotrophic in the Seine River immediately downstream of the Paris region due to high allochthonous organic pollution by the incompletely treated Parisian effluents and in the part of the estuary characterized by intense degradation of autochthonous material. Because the effluents are not treated by a nitrification step, the oxygen consumption due to nitrification was much higher than expected from the P:R ratio. Oxidation of ammonium represented an oxygen consumption of between 1 and 14 g O2 m−2 d−1, almost equalling the sum of heterotrophic respirations that were barely balanced by photosynthesis. The reaeration flux at the water-atmosphere interface was deduced from the calculations and a reaeration coefficient was estimated.  相似文献   

4.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

5.
Estuaries act as an organic matter and nutrient filter in the transition between the land, rivers and the ocean. In the past, high nutrient and organic carbon load and low oxygen concentration made the Elbe River estuary (NW Europe) a sink for dissolved inorganic nitrogen. A recent reduction in loads and subsequent recovery of the estuary changed its biogeochemical function, so that nitrate is no longer removed on its transition towards the coastal North Sea. Nowadays in the estuary, nitrification appears to be a significant nitrate source. To quantify nitrification and determine actively nitrifying regions in the estuary, we measured the concentrations of ammonium, nitrite and nitrate, the dual stable isotopes of nitrate and net nitrification rates in the estuary on five cruises from August 2012 to August 2013. The nitrate concentration increased markedly downstream of the port of Hamburg in summer and spring, accompanied by a decrease of nitrate isotope values that was clearest in summer exactly at the location where nitrate concentration started to increase. Ammonium and nitrite peaked in the Hamburg port region (up to 18 and 8 μmol L?1, respectively), and nitrification rates in this region were up to 7 μmol L?1 day?1. Our data show that coupled re-mineralization and nitrification are significant internal nitrate sources that almost double the estuary’s summer nitrate concentration. Furthermore, we find that the port of Hamburg is a hot spot of nitrification, whereas the maximum turbidity zone (MTZ) only plays a subordinate role in turnover of nitrate.  相似文献   

6.
Dreissena larval fluxes were studied in the lower stretch of the Seine River in 1996–1998. Fluxes reached 150×1012 ind d−1, representing a larval concentration of 5,000 ind l−1 in the Seine estuary. We showed that a sampling frequency with a 3-d interval allowed us to adequately estimate the annual production of larvae. The water residence time in the Seine River and estuary is sufficient for theDreissena larvae to complete their cycle and settlement. High abundance of the larvae in the plankton samples from the Seine River and its estuary showed the existence of a large community of benthic adults, known to be powerful filter-feeders. The progenitor population and the geographical extent of the adultDreissena were estimated from cohort analyses of the planktonic larvae. The maximum density ofDreissena was found in the highly channelized part of the estuary (up to 4,500 ind m−2). Estimated values were compared with concentration of mussels in the benthic traps and samples. Calculated filtration rates of benthic mussels were compared with those of larvae at different stages and with filtration of the zooplankton community. The impact of theDreissena was much higher than that of zooplankton; the filtration of the larvae exceeded that of adults during short periods of maximum larval emission.  相似文献   

7.
The longitudinal distribution of total suspended matter and total, dissolved, and particulate manganese in a small coastal plain estuary is described. The distribution of manganese is a consequence of estuarine circulation; a within-estuary maximum is inversely correlated with river flow, and is a function of residence time in the estuary, resuspension in the upper estuary, and desorption from particles introduced from within the estuary or from the river. The turbidity maximum is similarly most pronounced during low river flows. The upper estuary (salinity <15‰), comprising a small percentage of the total estuary volume during low flow, receives material from the river and along the bottom from the lower estuary; this material is returned to the water column by resuspension and desorption from estuarine and riverine particles. The lower estuary tends to damp out these processes because of the greater volume and (residence) time available for mixing.  相似文献   

8.
A comprehensive study of fine sediment transport in the macrotidal Seine estuary has been conducted, including observations of suspended particulate matter (SPM), surficial sediment, and bathymetric data, as well as use of a three dimensional mathematical model. Tide, river regime, wind, and wave forcings are accounted. The simulated turbidity maximum (TM) is described in terms of concentration and location according to tidal amplitude and the discharge of the Seine River. The TM is mainly generated by tidal pumping, but can be concentrated or stretched by the salinity front. The computed deposition patterns depend on the TM location and are seasonally dependent. The agreement with observations is reasonable, although resuspension by waves may be overestimated. Although wave resuspension is likely to increase the TM mass, it generally occurs simultaneously with westerly winds that induce a transverse circulation at the mouth of the estuary and then disperse the suspended material. The resulting effect is an output of material related to wind and wave events, more than to high river discharge. The mass of the computed TM remains stable over 6 months and independent of the river regime, depending mainly on the spring tide amplitude. Computed fluxes at different cross-sections of the lower estuary show the shift to the TM according to the river flow and point out the rapidity of the TM adjustment to any change of river discharge. The time for renewing the TM by riverine particles has been estimated to be one year.  相似文献   

9.
Rates of nitrification along an estuarine gradient in Narragansett Bay   总被引:1,自引:0,他引:1  
Rates of pelagic nitrification, measured using N-Serve-sensitive [14C]bicarbonate uptake, varied by as much as an order-of-magnitude among three sites along the salinity gradient of Narragansett Bay (Rhode Island, United States). Rates were always higher at the Providence River estuary site (0.04–11.2 μmol N I?1 d?1) than at either the lower Narragansett Bay site (0.02–0.98 μmol N I?1d?1) or the freshwater Blackstone River site (0.04–1.7 μmol N I?1d?1). Although temperature was the most important variable regulating the annual cycle of nitrification, ammonium concentrations were most likely responsible for the large differences in rates among the three sites in summer. At the levels found in this estuarine system, salinity and concentrations of oxygen or total suspended matter did not appear to have a direct measurable effect on nitrification and pH did only occasionally. Nitrification played an important role in the nitrogen cycle at all three sites. In Narragansett Bay, nitrification contributed 55% of the NO2 ? and NO3 ? entering annually, and was the major source during spring and summer. Water from offshore was the only other large source of NO2 ? and NO3 ?, contributing 34%. High summer rates of nitrification could support much of the phytoplankton uptake of NO2 ? and NO3 ?. In the Providence River estuary, the largest annual input of NO2 ? and NO3 ? was from rivers (54%), although nitrification (28%) and water from lower portions of the bay (11%) also made large contributions. Again, nitrification was most important in the summer. The high rates of nitrification in the Providence River estuary during summer were also likely to be important in terms of oxygen demand, and the production of nitric and nitrous oxides. In the Blackstone River, NO2 ? and NO3 ? concentrations increased as the river flowed through Rhode Island, and nitrification was a possible source.  相似文献   

10.
We report Zn isotopic ratios (δ66Zn) of river suspended particulate matter (SPM) and floodplain deposits (FD) from the Seine basin, France, with a precision ?0.05‰. A decrease in δ66Zn from 0.30‰ to 0.08‰ is observed in SPM from the upstream to downstream parts of the fluvial system, associated with an increase in Zn concentration from 100 ppm to 400 ppm. The Zn/Al of SPM at the river mouth is up to five times greater than the Zn/Al of the natural background, and by normalizing to the later value we define a Zn enrichment factor. Suspended sediments from a temporal series of samples collected in Paris display a similar variation in δ66Zn of between 0.08‰ and 0.26‰, while showing an inverse relationship between the Zn enrichment factor and δ66Zn. The amount of Zn transported as suspended load varies from 10% to 90%, as a function of increasing discharge. The δ66Zn of SPM and the dissolved load are correlated, suggesting that adsorption processes are probably not the dominant process by which the Zn enrichment of SPM takes place. Instead, we interpret our data as reflecting the mixture of two main populations of suspended particles with distinct δ66Zn. The first is characteristic of natural silicate particles transported by erosion processes to the river, while the second likely represents anthropogenic particles derived from wastewater treatment plants or combined sewer overflows. Based on isotopic ratios, we calculate that 70% of Zn in SPM of the Seine River in Paris is of anthropogenic origin.  相似文献   

11.
The dynamics of suspended particles within a fjord's estuarine circulation are investigated and the results compared with larger non-enclosed prodelta environments. In the upper prodelta, the seaward-flowing river plume flows over the ambient marine water depositing much of the initial riverine suspended load. Sedimentation is dominated by coarse silt and fine-grained sand particles with coarseness determined by the tidal and fluvial stage. Particles less than 10 μn have similar settling velocities regardless of size because they settle in flocs: the settling velocity at a water depth of 5 m is 30 m day-1 and increases with depth so that at 30 m the particles settle at 100 m day-1. For larger particles, the downward settling velocity enhancement due to flocculation decreases with increasing grain size. Hydraulic sorting allows the preferential settling of feldspar and quartz over mica. Particle dynamics in the lower prodelta are dependent on the character of the freshwater wedge that thins seaward of the upper prodelta. The vertical flux of particles is controlled by biogeochemical interactions such as pelletization of fine particles and flocculation (which occurs within rather than below the surface layer in contrast to the upper prodelta). The pellets are produced by indiscriminate filter feeding zooplankton. Across the lower prodelta the suspensate character, recognized in the composition of both flocs and pellets, changes from a dominance of mineral grains to that of autochthonous organic matter. The interaction of bacteria with the suspended particles increases with depth and seaward distance. At depth, the mucoid filaments form stable interconnecting webs. Particle concentration in the surface layer decreases at a rate proportional to the negative one-half and three-halves power of the distance seaward over the upper and lower prodelta, respectively. This relationship is hypothesized as being universal for large marine deltas dominated by buoyancy flow dynamics, regardless of the levels of initial riverine particle concentration or their composition.  相似文献   

12.
The lowest part of the Ebro River is a microtidal salt-wedge estuary. Penetration of the salt-wedge is largely controlled by the fluvial discharge and the morphology of the river bed, although sea level variations caused by tides and atmospheric conditions can also play significant roles. The concentration and distribution of suspended particulate matter in this part of the river and the fluvial sediment discharge are strongly influenced by the dynamics of the salt-wedge. Damming of the river has caused sediment to be trapped in reservoirs and has regulated the fluvial discharge. Intrusion of the salt wedge has thus also been regulated. At present, sediment discharge is between 1 and 1·5 × 105 tons per year, which is less than 1% of the sediment that the Ebro River discharged into the sea before construction of the dams. This extreme reduction in sediment supply has allowed marine erosional processes to dominate in the delta.  相似文献   

13.
High-resolution sedimentological and rock magnetic analyses from sediment cores collected in the Seine estuary record changes in coastal sedimentary dynamics linked to climatic variations during the late Holocene. Using AMS 14C and paleomagnetic data we present a first attempt in developing a reliable age model on macrotidal estuarine archives, with a decadal resolution. Correlations between sedimentary successions from the outer Seine estuary document the main sedimentary infilling phases of the system during the last 3000 years. Between 3000 and 1150 cal. BP sedimentary patterns reveal that sequence deposition and preservation are predominantly controlled by marine and tidal hydrodynamics while severe storm events are recorded at ca. 2700 and 1250 cal. BP in the outermost estuary. Conversely, the Medieval Warm Period (MWP; 900–1200 AD) is characterized by a drastic waning of the influence of marine hydrodynamics on sediment preservation. Pronounced episodes of Seine river floods indicate a much stronger impact of continental inputs on sedimentary patterns during this period. The onset of the Little Ice Age marks a diminishing influence of continental inputs while tidal and open marine hydrodynamics again exerted a primary control on the sedimentary evolution of the system during 1200–2003 AD. Coastal sedimentary dynamics as preserved within sedimentary successions appear to have been largely influenced by changes in storminess during the last 3000 years. We have matched the preservation of MWP Seine river floods, as revealed by sedimentological and rock magnetic proxy data, to a prolonged interval of weakened storminess in Normandy permitting the preservation of estuarine flood deposits within a context of reduced coastal erosion in northern Europe. The preservation of sedimentary successions in the Seine estuary is therefore maximal when climate conditions resembled those of the preferred low phase of the NAO on multidecadal timescales such as during 800–1200 AD (MWP). In contrast, increased removal and transport of estuarine sediments occur when winter storm activity greatly intensified over northwestern France. We report four prominent centennial-scale periods of stronger storminess, occurring with a pacing of ~1500 years, which are likely to be related to the last four Bond's Holocene cold events. Our results documenting a close link between coastal sedimentary dynamics, millennial-scale variations in Holocene climate and North Atlantic atmospheric circulation are fairly consistent with other records from Scandinavia, central Greenland and southern Europe.  相似文献   

14.
Analysis of soil profiles and shallow ground water in the Susquehanna River basin, northeastern U.S.A., indicates that the atmospheric flux of 210Pb is efficiently scavenged by the organic-rich horizons of the soils. This atmospherically supplied 210Pb in soil profiles can only be lost from the system by soil erosion. Based on the annual sediment yield of the Susquehanna River and the excess 210Pb concentration in particulate matter, a mean residence time of 2000 yr is calculated for metals similar to Pb in soil profiles.The West Branch of the Susquehanna River (WBSR) is strongly affected by acid mine drainage and is low in pH and high in dissolved ( <0.4 μm) 210Pb, Fe and Mn. Along its course iron hydroxide is precipitating at a pH of between 4 and 4.5 and the 210Pb supplied by the acid mine water is diminished by about 25% as a result of dilution. As the WBSR enters the Valley and Ridge Province of the Appalachians it has a 210Pb concentration of ~ 0.2 dpm/l. At this juncture it receives a considerable influx of alkalinity from tributaries draining carbonate terranes, resulting in neutralization of the sulfuric acid and increase of the river pH to around 6.5–7. This pH adjustment is accompanied by the precipitation of Fe and Mn. Due to the slow rate of Mn removal from solution, the Mn precipitation extends a considerable distance down river from the point of acid neutralization. Analyses for 210Pb in the river at points in or below the region of Mn precipitation show that 210Pb is rapidly scavenged from solution onto suspended particles. From the data it is possible to calculate the removal rate of Pb from water in the presence of Fe and Mn hydroxides and other particles. At a pH of 4–4.5 Pb removal is nonexistent relative to the river flow rate, but at a pH of 6.5–7 the 210Pb data indicate a residence time of <0.7 day for dissolved Pb.  相似文献   

15.
The Columbia River estuary is characterized by relatively large tidal currents and water residence times of a few days or less. These and other environmental conditions tend to suppress water column productivity and favor the export of riverborne nutrients to the coastal ocean. However, hotspots of biological activity may allow for significant nutrient transformation and removal within the estuary, but these processes have previously been difficult to quantify due to the challenges of obtaining measurements at appropriate frequency and duration. In this study, nutrient biogeochemical dynamics within the salt-influenced region of the estuary were quantified using high-resolution in situ observations of nutrients and physical water properties. During 2010, three autonomous nutrient sensors (Satlantic SUNA, SubChem Systems Inc. APNA, WET Labs Cycle-PO4) that together measured nitrate?+?nitrite, orthophosphate, ammonium, silicic acid, and nitrite were deployed on fixed observatory platforms. Hourly measurements captured tidal fluctuations and permitted an analysis of river and ocean end-member mixing. The results suggested that during summer, the lower estuary released high concentrations of ammonium and phosphate despite low concentrations in the river and coastal ocean. This was likely a result of organic matter accumulation and remineralization in the estuarine turbidity maximum and the lateral bays adjacent to the main channel.  相似文献   

16.
Dissolved and particulate hydrocarbons of biogenic origin were investigated for the first time in surface waters along the Seine River and its estuary. They comprise n-alkanes (n-ALKs) and diagenetic polycyclic aromatic hydrocarbons (PAHs). Samples were collected in three different sections of the estuary: the riverine zone, the mixing zone, and the marine zone. At the river mouth, two mooring stations were used for the collection of samples over tidal cycles. Total particulate n-ALK concentrations ranged from 31 ng 1?1 to 2,918 ng 1?1, or 5 μg g?1 dry ng 1?1, or 2 μg g?1 of SM. Concentrations varied with the SM load and could be related to sedimentation and estuarine mixing. The sources of the n-ALKs were different in each zone of the estuary. The dissolved n-ALKs displayed lower concentrations than the particulate phase, varying from 136 ng 1?1 to 344 ng 1?1, while biogenic dissolved PAHs were almost absent.  相似文献   

17.
The regulatory effect of salinity on nitrogen dynamics in estuarine sediments was investigated in the Randers Fjord estuary, Denmark, using sediment slurries and intact sediment cores and applying 15N-isotope techniques. Sediment was sampled at three representative stations varying in salinity, and all experiments were run at 0‰, 10‰, 20‰, and 30‰. The sediment NH4 + adsorption capacity decreased markedly at all stations when salinity was increased from 0‰ to 10‰; further increase showed little effect. In situ nitrification and denitrification also decreased with increasing salinities, with the most pronounced reduction of approximately 50% being observed when the salinity was raised from 0‰ to 10‰. The salinity-induced reduction in NH4 + adsorption capacity and stimulation of NH4 + efflux has previously been argued to cause a reduction in nitrification activity since the nitrifying bacteria become limited by NH4 + availability at higher salinities. However, using a potential nitrification assay where NH4 + was added in excess, it was demonstrated that potential nitrification activity also decreased with increasing salinity, indicating that the inhibitory salinity effect may also be a physiological effect on the microorganisms. This hypothesis was supported by the finding that denitrification based on NO3 from the overlying water (Dw), which is independent of the nitrification process, and hence NH4 + availability, also decreased with increasing salinity. We conclude that changes in salinity have a significant effect on nitrogen dynamics in estuarine sediments, which must be considered when nitrogen transformations are measured and evaluated.  相似文献   

18.
Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.  相似文献   

19.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   

20.
Identification of sediment sources and associated nutrients and contaminants is crucial to the ecological management of aquatic systems. A combination of geochemical and radionuclide tracing techniques and geostatistical modelling have been used to determine the primary source areas of fine sediment delivered to the Maroochy River estuary. The application of radionuclide (137Cs and 210Pb) techniques indicate that approximately 70% of the sediment in the Maroochy River estuary originates from subsoil erosion. An average of 60% of sediment in the lower estuary originates from soils developed on the Landsborough Sandstone, with 35% coming from soils developed on granitoids. In the mid-Maroochy River estuary major contributions of fine sediment come from soils developed on Landsborough Sandstone (38%) and granitoids (36%). Estimated sediment residence times in the Maroochy River estuary are generally less than 30 years, however, one sample site near the estuary mouth had an estimated residence time of at least 30 years. This indicates that sediment accumulation rates in mangroves along the estuary margins are relatively low. Results from this study will be used by catchment managers to better target remedial action to reduce fine sediment delivery to the Maroochy River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号