首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Riverbank retreat along a bend of the Cecina River, Tuscany (central Italy) was monitored across a near annual cycle (autumn 2003 to summer 2004) with the aim of better understanding the factors influencing bank changes and processes at a seasonal scale. Seven flow events occurred during the period of investigation, with the largest having an estimated return period of about 1·5 years. Bank simulations were performed by linking hydrodynamic, fluvial erosion, groundwater flow and bank stability models, for the seven flow events, which are representative of the typical range of hydrographs that normally occur during an annual cycle. The simulations allowed identification of (i) the time of onset and cessation of mass failure and fluvial erosion episodes, (ii) the contributions to total bank retreat made by specific fluvial erosion and mass‐wasting processes, and (iii) the causes of retreat. The results show that the occurrence of bank erosion processes (fluvial erosion, slide failure, cantilever failure) and their relative dominance differ significantly for each event, depending on seasonal hydrological conditions and initial bank geometry. Due to the specific planimetric configuration of the study bend, which steers the core of high velocity fluid away from the bank at higher flow discharges, fluvial erosion tends to occur during particular phases of the hydrograph. As a result fluvial erosion is ineffective at higher peak discharges, and depends more on the duration of more moderate discharges. Slide failures appear to be closely related to the magnitude of peak river stages, typically occurring in close proximity to the peak phase (preferentially during the falling limb, but in some cases even before the peak), while cantilever failures more typically occur in the late phase of the flow hydrograph, when they may be induced by the cumulative effects of any fluvial erosion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   

4.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Bank retreat in the Jingjiang Reach is closely related not only to the near‐bank intensity of fluvial erosion but also to the composition and mechanical properties of bank soils. Therefore, it is necessary to correctly simulate bank retreat to determine the characteristics of fluvial processes in the Jingjiang Reach. The current version of bank stability and toe erosion model (5.4) was improved to predict riverbank retreat, by inputting a dynamic water table, and calculating the approximation of the distribution of dynamic pore water pressure in the soil near the river bank face, and considering the depositional form of the failed blocks, which is assumedly based on a triangular distribution, with the slope approximately equalling the stable submerged bank slope and half of collapsed volume deposited in the bank‐toe region. The degrees of riverbank stability at Jing34 were calculated using the improved bank stability and toe erosion model. The results indicate the following trends: (a) the degrees of riverbank stability were high during the dry season and the rising stage, which led to minimal bank failure, and (b) the stability degrees were low during the flood season and the recession stage, with the events of bank collapse occurring frequently, which belonged to a stage of intensive bank erosion. Considering the effects of bank‐toe erosion, water table lag, and the depositional form of the collapsed bank soil, the bank‐retreat process was simulated at the right riverbank of Jing34. The model‐predicted results exhibit close agreement with the measured data, including the total bank‐retreat width and the collapsed bank profile. A sensitivity analysis was conducted to determine the quantitative effects of toe erosion and water table lag on the degree of bank stability. The calculated results for toe erosion indicate that the amount of toe erosion was largest during the flood season, which was a primary reason for bank failure. The influence of water table lag on the degree of stability demonstrates that water table lag was an important cause of bank failure during the recession stage.  相似文献   

6.
Bank retreat involving a combination of fluvial erosion and bank collapse has been found to be a major contributor to sediment transport, lateral migration, and planform evolution of meandering rivers.Previous studies have largely examined the general mechanism of cantilever bank failure. However, the composite process of beam(toppling) failure caused by shear failure of the lower part composed of noncohesive soil remains poorly understood. The current paper investigates the diversity and coupli...  相似文献   

7.
In the last decade, sediment replenishment forming cohesionless sandy banks below dams has become an increasingly common practice in Japan to compensate for sediment deficits downstream. The erosion process of the placed cohesionless sediment is a combination of lateral toe-erosion and the following mass failure. To explore cohesionless bank failure mechanisms, a series of experiments was done in a soil tank using a compacted sandy soil mass exposed to an increasing water level. Two types of uniform sand(D_(50) = 0.40 mm and 0.17 mm) and two bank heights(50 cm and 25 cm) were used under the condition of a constant bank slope of 75°. The three dimensional(3D) geometry of the bank after failure was measured using a handheld 3D scanner. The motion of bank failure was captured using the particle image velocimetry(PIV) technique, and the matric suction was measured by tensiometers. The compacted sandy soil was eroded by loss of matric suction accompanying the rise in water level which subsequently caused rotational slide and cantilever toppling failure due to destabilization of the bank. The effect of erosion protection resulting from the slumped blocks after these failures is discussed in the light of different failure mechanisms. Tensile strength is analyzed by inverse calculation of cantilever toppling failure events. The tensile strength had non-linear relation with degree of saturation and showed a peak.The findings of the study show that it is important to incorporate the non-linear relation of tensile strength into stability analysis of cantilever toppling failure and prediction of tension crack depth within unsaturated cohesionless banks.  相似文献   

8.
Cross-sections of 16 straight sandbed streams in Minnesota, Iowa, and Nebraska were surveyed. Two stratigraphic horizons were found in the banks at each site, an upper cohesive unit usually composed of silt and clay and a lower unit composed of sand. Bank erosion on these rivers occurs when the upper cohesive unit is undercut by scour at bends. The overhanging cohesive block fails by beam or cantilever failure. As upper bank failure is a direct result of undercutting, the stability and rate of retreat of the bank are largely determined by erosion of the sandy part of the bank. The cohesive layer has little influence on bank retreat and width adjustment on the rivers studied here. A quantitative lateral sediment transport model developed by Parker (1978a) is used to calculate the steady-state geometry of the sandy part of the bank. Results are obtained for the shape, length, and height of the sandy part of the bank. The model predicts the length of the bank fairly well, and the theoretical equation for the height of the bank is of the correct form. The model, however, overestimates the slope of the bank. The height of the sandy part of the bank (Db) is approximately equal to the depth of the mean annual flow. Since Db is determined by the lateral sediment transport model, the width (W) may be obtained from the equation of continuity (Q = WDbV), published flow (Q) data, and a resistance equation for the mean velocity, V. The calculated widths are similar to those measured in the field.  相似文献   

9.
We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ‘wet’ graminoid meadow vegetation were on average five times stronger than those colonized by ‘dry’ xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
《国际泥沙研究》2016,(3):220-225
The cantilever failure is one of the typical bank failures, in which the lateral caving erosion at the bottom of the bank plays an important role. When the caving erosion width is larger than a certain value, the cantilever failures such as shear, toppling and stress failures may occur. In order to understand the condition of the cantilever failure, the collapse mechanisms of the cantilever failures are studied based on the bank stability theory and flume experiment. According to the bank stability equation with the lateral erosion, the critical caving erosion width (CCEW) formulas for the shear and toppling failures of simple slope bank were derived in this paper. The formulas show that the CCEW increases as the overhanging soil thickness and soil cohesion increase, and decreases as the crack depth on the bank surface and the slope angle of the bank increase. And these formulas were tested with experimental data, which shows the predicted values are good agreement with experimental data. The paper reveals a quantitative expression on the process of the river cantilever failure.  相似文献   

11.
Streambank retreat can be a significant contributor to total sediment and nutrient loading to streams. Process-based bank stability models, such as the Bank Stability and Toe Erosion Model (BSTEM), have been used to determine critical factors affecting streambank erosion and failure such as riparian vegetation and to estimate retreat rates over time. BSTEM has been successfully applied on a number of cohesive streambanks, but less so on composite banks consisting of both cohesive and noncohesive soils in highly sinuous streams. Composite streambanks can exhibit rapid and episodic bank retreat. The objectives of this research were twofold: (i) develop and apply simplified procedures for estimating root cohesion based on above- and below-ground biomass estimates and (ii) systematically apply BSTEM to a series of 10 composite streambanks distributed along the Barren Fork Creek in eastern Oklahoma to assess model sensitivity to root cohesion and model performance in predicting retreat. This research aimed to document the influence of riparian conservation practices on bank retreat rates and evaluated simplistic methods for incorporating such practices into such process-based models. Sites modeled included historically unprotected sites with no riparian vegetation and historically protected sites with riparian vegetation present during all or part of the 2003 to 2010 study period. The lateral retreat ranged from 4.1 to 74.8 m across the 10 sites and was largest at the historically unprotected sites in which retreat averaged 49.2 m. Protected sites had less bank retreat but with more variability in retreat rates per year. With calibration focused on the erodibility parameters, the model was able to match both the observed total amount of retreat as well as the timing of retreat at both the protected and unprotected sites as derived from aerial imagery. During calibration BSTEM was not sensitive to the specific value of the soil cohesion or the additional soil cohesion added due to roots for the cohesive topsoil layer, suggesting that the proposed simplified techniques could be used to estimate root cohesion values. The BSTEM modeling also provided an advantageous assessment tool for evaluating retreat rates compared to in situ bank retreat measurements due to the magnitude and episodic nature of streambank erosion and failures. Process-based models, such as BSTEM, may be necessary to incrementally model bank retreat in order to quantify actual streambank retreat rates and understand mechanisms of failure for the design of stabilization projects.  相似文献   

12.
River bank erosion occurs primarily through a combination of three mechanisms: mass failure, fluvial entrainment, and subaerial weakening and weathering. Subaerial processes are often viewed as ‘preparatory’ processes, weakening the bank face prior to fluvial erosion. Within a river basin downstream process ‘domains’ occur, with subaerial processes dominating the upper reaches, fluvial erosion the middle, and mass failure the lower reaches of a river. The aim of this paper is to demonstrate that (a) subaerial processes may be underestimated as an erosive agent, and (b) process dominance has a temporal, as well as spatial, aspect. Bank erosion on the River Arrow, Warwickshire, UK, was monitored for 16 months (December 1996 to March 1998) using erosion pins. Variations in the rate and aerial extent of erosion are considered with reference to meteorological data. Throughout the first 15 months all erosion recorded was subaerial, resulting in up to 181 mm a?1 of bank retreat, compared with 13 to 27 mm a?1 reported by previous researchers. While the role of subaerial processes as ‘preparatory’ is not contended, it is suggested that such processes can also be erosive. The three bank erosion mechanisms operate at different levels of magnitude and frequency, and the River Arrow data demonstrate this. Thus the concept of process dominance has a temporal, as well as spatial aspect, particularly over the short time‐periods often used for studying processes in the field. Perception of the relative efficacy of each erosive mechanism will therefore be influenced by the temporal scale at which the bank is considered. With the advent of global climate change, both these magnitude–frequency characteristics and the consequent interaction of bank erosion mechanisms may alter. It is therefore likely that recognition of this temporal aspect of process dominance will become increasingly important to studies of bank erosion processes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Salt marsh cliff erosion in the Oosterschelde, due to basal scour and small-scale failure, was monitored during a two-year period using reference stakes. The composite marsh cliffs have a cantilever profile. Their stability is evaluated from beam failure analysis. A model is proposed, in which the cantilever weight is taken as the motive force; the major resistive force is the tensile strength. By substituting height, undermining width and soil mechanical properties of the cliff in the model, one can identify the cliffs that are likely to fail. Salt marsh cliffs, which combine a large tensile strength due to roots at the top of the profile with a large compressive stress at the cliff base due to the sandy texture of the subsoil, display the highest resistance to beam failure. The critical cliff dimensions, observed in the field, correspond with the values calculated from the proposed model of beam failure.  相似文献   

14.
Field studies suggest that a cohesive floodplain is a necessary condition for meandering in contrast to braided rivers. However, it is only partly understood how the balance between floodplain construction by overbank deposition and removal by bank erosion and chutes leads to meandering. This is needed because only then does a dynamic equilibrium exist and channels maintain meandering with low width–depth ratios. Our objective is to understand how different styles of floodplain formation such as overbank deposition and lateral accretion cause narrower channels and prevent chute cutoffs that lead to meandering. In this study we present two experiments with a self‐forming channel in identical conditions, but to one we added cohesive silt at the upstream boundary. The effect of cohesive silt on bank stability was tested in auxiliary bank erosion experiments and showed that an increase in silt reduced erosion rates by a factor of 2. The experiment without silt developed to a braided river by continuous and extensive shifting of multiple channels. In contrast, in the meandering river silt deposits increased bank stability of the cohesive floodplain and resulted in a reduction of chute cutoffs and increased sinuosity by continuous lateral migration of a single channel. Overbank flow led to deposition of the silt and two styles of cohesive floodplain were observed: first, overbank vertical‐accretion of silt, e.g. levee, overbank sedimentation or splays; and second, lateral point bar accretion with silt on the scrolls and in the swales. The first style led to a reduction in bank erosion, while the second style reduced excavation of chutes. We conclude that sedimentation of fine cohesive material on the floodplain by discharge exceeding bankfull is a necessary condition for meandering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Numerous processes may instigate bank retreat and the consequent collection of failed cohesive materials at the bank toe. Cohesion between the failed material and the substrate can provide additional strength to resist direct fluvial entrainment. Failed, cohesive material can act as a form of natural bank‐toe protection by consuming and diverting flow energy that may otherwise be used to further scour the basal zone of incising channels. Investigations in Goodwin Creek, Mississippi, have revealed the existence of apparent cohesion between failed, cohesive blocks and their underlying surface. The method used to assess this cohesion involved a pulley system mounted on a tripod and supporting a load cell. Mean and maximum apparent‐cohesion values of 1·08 kPa and 2·65 kPa, respectively, were measured in this way, identifying a source that bonds blocks to the underlying surface. Cohesion values and types vary spatially and temporally. Tensiometric tests beneath blocks suggest that cohesion resulting from matric suction alone may be as much as 3·5 kPa in summer and 1·8 kPa in winter. Apparent cohesion is believed to have been sufficient to help prevent removal of the largest blocks by a peak flow of 66·4m3/s on 23 September 1997. Maximum excess shear stress required to entrain a D75 block can be augmented by as much as 97% by the presence of apparent cohesion at the block–substrate interface when compared with a condition with zero apparent cohesion at the block underside. Given these findings, it is no longer sufficient to estimate block entrainment in the basal area from block size or bed roughness alone, as in a Shields‐type approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper provides instruction in the use of the computer spreadsheet to undertake the calculations necessary to apply the Osman–Thorne bank stability analysis for steep, eroding riverbanks. The guide explains how to input the necessary parameters into the LOTUS 123 spreadsheet in order to:
  • 1 find the initial factor of safety of the bank with respect to slab-type failure;
  • 2 test the sensitivity of bank stability to changes in the engineering properties of the bank material;
  • 3 analyse the response of bank stability to toe scour and/or lateral erosion and find the critical condition;
  • 4 find the geometry of the failure surface and failure block;
  • 5 analyse the response of bank stability to further toe scour and/or lateral erosion;
  • 6 find the geometry of the failure surface and failure block in subsequent failures.
  相似文献   

19.
A low‐energy saltmarsh in the Beaulieu River Estuary, southern England was investigated. A geomorphological survey revealed that the creek bank geometry was characterized by the presence of cantilevers, a result of the protection provided by roots over the upper part of the bank. The saltmarsh deposits, consisting mainly of clay and organic matter, have a high resistance to flow‐induced erosion. Short‐term hydrographic deployments revealed that the tidal currents and waves recorded were insufficient to cause erosion of the bank surface. However, pin measurements over a 2‐year period revealed that the tidal creeks within the saltmarsh did experience bank erosion, particularly below the cantilevers, in spite of this low‐energy setting. Bank face erosion was therefore considered to be related to long‐term processes. The bases of the cantilevers were found to be located at a precise level, in relation to the tides. Water level data over a 2‐year period were examined against erosion measured below the cantilevers. The results suggest that the erosion on the bank faces, particularly below the cantilevers, is associated with the frequency of water level variations and long‐term submergence/emergence cycles, which can decrease the bonds between the particles and enable erosion by low tidal and wind‐wave currents within this low‐energy environment. This mechanism is probably responsible for tidal creek enlargement via erosion of the bank face and subsequent bank failure, a process which acts over a long temporal scale (1–10 years). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
三峡工程运用后长江中游荆江河段河床持续冲刷,局部河段崩岸频发,影响河道内悬沙输移与河床形态调整.本研究采用实测长程河道地形及固定断面地形资料,确定了2002-2018年荆江河段的主要崩岸区域,估算了崩岸土体的泥沙总量,进而定量分析了河岸崩退对河床调整的影响.计算结果表明:荆江段累计河岸崩退体积约为2.0亿m3,约占该河...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号