首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Glaciotectonic structures in subglacial till and substrate, as well as stone fabric, provenance and surface features in till, indicate that complex interactions of late Wisconsinan glacial lobes occurred along a mountain front in the western Fraser Lowland of southwestern British Columbia. Tills of this study represent subglacial deposition through the maxima of two stades in the Fraser Glaciation, the Coquitlam and the Vashon. Through each stadial maximum, temperate glacial ice was grounded and commonly overrode proglacial outwash while superimposing deformations in subglacial till during three phases: (1) pre-maximum glacier flow down valleys and into lowland piedmont ice, (2) coalescent piedmont ice during stadial maxima when flow was westward along the mountain front and across valley mouths, and (3) post-maximum glacier flow down valleys into lowland piedmont ice but prior to general deglaciation. Valley glaciers appear to have shifted flow directions during phases 1 and 3. During stadial maxima (phase 2), Fraser Lowland piedmont ice may have been part of an outlet glacier-ice stream complex that terminated in salt water over the continental shelf.  相似文献   

2.
Till is of common occurrence in the marine environment and can be both subglacial and proglacial in origin. Former glacial margins are often represented by till tongues, that are interbedded with stratified glaciomarine sediment, and the relationship is readily mappable using seismic reflection techniques. It is inferred that within individual till tongues, sediment-gravity flow deposits form transitional contacts with till of subglacial origin, but these contacts cannot be distinguished on seismic profiles. These unstratified, gravity-induced deposits formed in close proximity to the glacial source at the grounding line are considered to be secondary tills (flow-till complex) in terms of the INQUA classification of tills. Till-tongue successions and till deltas are large, ice-marginal depocentres associated with floating front ice-margins, and appear to be closely related in origin. Tabular and hummocky moraines of the mid-Norwegian Shelf also are considered to be products of floating-front margins and represent a large proportion of the retreat tills formed during ice recession. Seismostratigraphic evidence for channelisation in ice-marginal deposits appears to provide a means of distinguishing between former tidewater and floating-front margins.  相似文献   

3.
The sea-floor morphology of two pronounced across-fjord bedrock thresholds located at the mouths of Ofotfjorden and Tysfjorden, northern Norway, has been analysed based on swath bathymetry and seismic data. The Younger Dryas ice front was located here during the recession of one of the large palaeo-ice streams of the Fennoscandian Ice Sheet. The thresholds are several kilometres long and wide, rising to several hundred metres above the adjacent sea floor, and the slopes are steep, up to 25°. The Ofotfjorden threshold is draped by acoustically discontinuous to chaotic sediments partly infilling the bedrock relief. A pattern of well-developed, subglacial bedforms (e.g. crag-and-tail formations, drumlins and glacial lineations) on top of both thresholds suggests fast-flowing ice. A series of smaller transverse ridges is identified on both thresholds and probably records ice-front oscillations during the final deglaciation. The distal parts of the sediments have been remobilized by slides that occurred after glacial retreat from the thresholds. Earthquake activity due to the isostatic rebound following ice retreat from this area was the most likely triggering mechanism for the slides. The location of the ice front on a prominent bedrock threshold indicates that the basin configuration was important in locating the maximum position of the climatically induced re-advance, i.e. a topographic control on the maximum Younger Dryas position in the Ofotfjorden and Tysfjorden area is suggested.  相似文献   

4.
A map has been reconstructed representing the large-scale glacial and glaciofluvial morphology of Northern Karelia and the adjacent area of Soviet Karelia. Observations have been made on the directions of glacial striae and on the distribution of sub-aquatic and supra-aquatic terrain in order to obtain a consistent picture of the course of deglaciation in the area and the factors affecting it. The map indicates that the behaviour of the glacier during the deglaciation was largely governed by the distribution of sub-aquatic and supra-aquatic areas. The marginal zone of the ice sheet was divided into two large lobes in this area. The Finnish Lake District Lobe terminated mostly in water, giving rise to massive glaciofluvial accumulations, while the North Karelian Lobe flowed on the land above the highest shore levels, pushing up several more or less discontinuous narrow end-moraine ridges. Relatively large glaciofluvial deposits were also formed in the supra-aquatic area in places where the ice margin terminated in a local ice-dammed lake. It is evident that the Salpausselkä I and II end-moraines extend as continuous formations only to the zone where the former ice margin rose onto dry land during the deglaciation phase. The spatial and temporal differences in the glacial dynamics and differing depositional environments gave rise to the complex glacial morphology of Northern Karelia.  相似文献   

5.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   

6.
The origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.  相似文献   

7.
Late Weichselian glacial sediments were studied in three sections west of Lund, southwest Sweden. The lowermost sedimentary unit is a lodgement till containing rock fragments derived from the northeast-east. Fabric analyses indicate successive ice flow directions: from the northeast, east-northeast, south-southeast and then east. The last active ice movement in the area was from the east. Above the lodgement till are deglaciation sediments consisting of meltout till, flow till and glaciofluvial sand and gravel deposited in a subaerial stagnant-ice environment. The uppermost unit consists of glaciolacustrine clay and silt, containing abundant ice-rafted debris, deposited during a short-lived transgression phase when stagnant ice was still present in the area. At the westernmost site investigated, the petrographical composition of the deglaciation deposits displays a gradual change, with upwards increasing components of Cretaceous chalky limestone. The presence of this rock type requires a period of glacial transport from the south. This stratigraphy cannot be explained with traditional glaciodynamic models. A possible scenario can, however, be constructed using a previously published model (Lagerlund, 1987) where marginal ice domes in the southwestern Baltic area interact with the main Scandinavian Ice Sheet.  相似文献   

8.
Geomorphological analysis of a digital elevation model reveals an extensive zone with uniformly oriented elongated landforms in the middle and eastern Wielkopolska Lowland, directly to the north of the maximum extent of the Weichselian Ice Sheet. Individual linear landforms are up to 10 km long, a few hundred metres wide, and with only a few metres of relief. The belts of linear landforms visible on the surfaces of the uplands are disrupted by subglacial channels and younger river valleys. The character and distribution of both landform types, in relation to the outlines of marginal zones of the Weichselian ice lobes, indicate that their origin was subglacial. The elongated landforms are interpreted as mega-scale glacial lineations (MSGLs) characteristic of palaeo-ice stream zones. The MSGLs occur in a zone 70 km long and 80 km wide and are distinctly divergent towards the maximum extent of the ice sheet. This arrangement demonstrates that they are the record of the terminal zone of the ice stream, whose full size was likely in the order of a few hundred kilometres in length.  相似文献   

9.
Subglacial erosional forms are commonly found on bedrock substrates inside the Late Weichselian ice margin in County Donegal, northwest Ireland, and can be used to provide detailed information on subglacial processes and environments. The erosional forms occur on spatial scales from whalebacks (tens of metres in scale), to asymmetric and channelized bedrock-cut scours (tens of cm in scale) and striations (mm scale). Processes responsible for development of subglacial erosional forms occur along a continuum, from free meltwater existing as a laterally extensive sheet at the ice-bed interface, to abrasion by basal ice. Channelized bedrock-cut scours are particularly common in County Donegal, and show asymmetric and meandering thalwegs, U-shaped cross-profiles and steep lateral margins. Innermost parts of the scours are highly polished and have striations that follow thalweg direction. In places, bedrock surfaces are overlain by a delicate polish and thin calcite cement, and are buried beneath glacial till. Based on their morphology, the bedrock scours are interpreted as s-forms caused by high-pressure subglacial meltwater erosion. Striations within the scoured channels reflect periods of ice-bed coupling and subglacial abrasion. The range of features observed here was used to consider relationships between subglacial topography, hydraulic processes and ice-bed coupling. Precipitation of calcite cement took place in depressions on the bedrock surface by CO2 degassing. Infilling of depressions by glacial till formed a new type of 'sticky spot' related to spatial variations in subglacial water pressure. The temporal evolution of sticky spots reflects interactions within the subglacial environment between subglacial relief, hydraulic regime and ice-bed coupling.  相似文献   

10.
In the UK, a combination of outcrop mapping, satellite digital elevation models, high‐resolution marine geophysical data and a range of dating techniques have constrained the maximum limit and overall retreat behaviour of the British and Irish Ice Sheet (BIIS). The changing styles of deglaciation have been most extensively studied in the west and north‐western sectors of the BIIS, primarily using offshore geophysical surveys. The surviving record in the southern, terrestrial sector is fragmentary, permitting only large‐scale (tens of kilometres) and longer timescale (c. 1 ka) reconstructions of ice‐margin movement, with limited information on deglacial processes. Here we present a high‐resolution study of the retreat behaviour for a section of the southern ice‐margin from Windermere in the Lake District, using high‐resolution two‐dimensional multi‐channel seismic data, processed using prestack depth migration. By combining the seismic stratigraphy with landform morphologies, extant cores and seismic velocity measurements, we are able to distinguish between: over‐consolidated till; recessional moraines; De Geer moraines; flowed till/ice‐front fan; supra‐/en‐glacial melt‐out till; and subsequent glaciolacustrine/lacustrine sedimentation. The results reveal a complex and active valley glacier withdrawal from Windermere that changed character between basins and produced two small, localized areas of ice‐stagnation and downwasting. This study indicates that similar active ice‐margin retreats probably took place in other valleys of the Lake District during the Late Devensian deglaciation rather than the previously held view of rapid ice‐stagnation and downwasting. When combined with the regional terrestrial record, this supports a model of early ice loss in terrestrial England compared with other parts of the UK. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Samples of Middle Devonian (Eifelian age; 387–380 Ma) indurated and non‐cemented sandstone were compared with Pleistocene basal tills in Estonia and Latvia to test a hypothesis that glacial SEM (scanning electron microscopy) microtextures are distinctly different from those produced in a fluvial depositional environment. The deposits of Middle Devonian Aruküla Stage were emplaced in a continental water basin close to sea level and well away from any glacial source. Therefore, the SEM microtextures on quartz grains from the Aruküla Stage should show mainly the effect of stream transport. The basal tills are of Late Weichselian age deposited as ground moraine directly over the sandstone. Additional glaciofluvial and glaciolacustrine samples were included with the tills to determine whether glacial and fluvial‐lacustrine transport could be differentiated by the SEM microtextures. Samples of oriented blocks of till from a limited number of sites were studied without pretreatment to determine whether sand clast orientation could provide a method for determining glacial flow vectors. While there are some microtextural similarities between grains from glacial and glaciofluvial‐lacustrine depositional environments, the vast majority of grains from till deposits (50%–60%) are faceted, sharp edged, angular to subangular, and comprised of numerous and distinct microfeatures including abraded surfaces over microfractures, deep linear and curved troughs (striations), step features, and a preponderance of conchoidal and linear microfractures. Glaciofluvial and lacustrine grains contain abundant abrasion features and v‐shaped percussion cracks that make them very distinct from glacial grains. Fluvial transport produces primarily rounded grains, well abraded, with v‐shaped percussion scars dominating. Thus, it is possible to use microtextural differences between the three sample suites to identify particular depositional environments. Oriented till blocks provide information on sand clast orientation. Although carbonate coatings often obscure sand clasts in untreated blocks, it is possible to determine some microfabric information that can be useful in determining flow direction of the ice.  相似文献   

13.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

14.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

15.
Two kinds of buried structures are described from Dzirżenin, north-east of Warsaw, where they occur within a glaciofluvial landform: (1) narrow till ridges, showing vertically oriented structures, excavated from stratified gravel and sands; and (2) a narrow vertical zone of massive gravelly/sandy material, involving vertically oriented lens-like layers composed of massive sand with pebbles, or of diamicton. The gravelly/sandy zone is also closely surrounded by stratified glaciofluvial sediments. In spite of their vertical position and internal deformation, the till ridges and gravelly/sandy zone show non-tectonic contacts with the surrounding, stratified, undisturbed sediments. The glaciofluvial sediments that occur immediately next to the structures under discussion are characterized by the occurrence of comparatively coarse material and interbeddings of diamicton, which wedge out away from these structures. The gravelly/sandy zone separates different kinds of water-laid deposits. The buried structures are interpreted as former debris-laden bands, thrust upwards within the frontal part of the ice sheet and then transformed into still-frozen debris ridges projecting over the already dead ice. Further melting of the decaying ice resulted in abundant glaciofluvial sedimentation, and the debris ridges also supplied material for the deposition of the neighbouring stratified deposits. One of the ridges separated different glaciofluvial environments. The glaciofluvial sediments completely buried the ice-cemented ridges, which were finally transformed by a melting-out process into the till ridges and the gravelly/sandy zone. The former are interpreted as having been transformed from upturned debris-laden bands with a high concentration of debris or from the bands composed of frozen-up sediment slabs. The gravelly/sandy zone is interpreted as having (most probably) been deposited from upturned bands characterized by a lesser concentration of debris.  相似文献   

16.
On the basis of glacial landforms interpreted by means of Landsat satellite imagery and ice-flow data obtained by other methods, the Scandinavian ice sheet has been observed to have divided at the deglaciation stage into several ice lobes. The ice lobes were more active parts of the uniform ice sheet. They represent parts that had bordered on each other in different directions or on more passive portions of the ice. The reasons for the appearance of separate ice lobes were evidently the Fennoscandian topography, the location of accumulation areas, and regional differences in the amounts of ice generated. In the boundary zones of the different ice lobes, there occur exceptionally large glaciofluvial forms and moraines (interlobate complexes). An area of passive ice was often between ice lobes, and in such areas there occur no noteworthy eskers, marginal formations or streamlined forms. In the part of Finland located on the southern side of the Arctic Circle, six different ice lobes and four major areas of passive ice are interpreted to have existed.  相似文献   

17.
The stratigraphy and preliminary interpretation of a new locality with glacial deposits in a previously interpreted ice-free area in Tierra del Fuego are presented. These deposits consist of basal proglacial gravels (at least 4–5 m thick) covered by the Drift Cabo Campo del Medio. The drift consists of a lower, 2 m thick, lodgment till and a upper, 7 m thick, glaciotectonized composite till, reflecting basal glacier shearing and upthrusting of glaciofluvial deposits and lodgment till, with superimposed deformation by gelifluction. These two main drift packages are interpreted as ground moraines, reflecting two corresponding glacial advances with an intervening recess of the glacier front. The altitude of the Drift Campo del Medio, well above younger fluvioglacial deposits related to the Last Glaciation, the degree of erosional modifications, and its external position, to the NE of the Last Glaciation moraine system, are evidence suggesting that the Drift Cabo Campo del Medio was related to a glaciation older than the Penultimate Glaciation. The finding of this locality sheds new light on the old controversy of total vs partial ice coverage of the island.  相似文献   

18.
A complex of glacial landforms on northeastern Victoria Island records diverse flows within the waning late Wisconsinan Laurentide Ice Sheet over an area now divided by marine straits. Resolution of this ice flow pattern shows that dominant streamlined landforms were built by three radically different ice flows between 11,000 and 9000 BP. Subsequent to the glacial maximum, the marine-based ice front retreated at least 300 km to reach northeast Victoria Island by 10,400 BP. Disequilibration at the rapidly retreating margin induced minor surges on western Storkerson Peninsula (Flow 1). Next, a readvance into Hadley Bay transported 10,300 BP shells, while a major ice stream over eastern Storkerson Peninsula (Flow 2) remoulded till into a drumlin field several hundred kilometres long and at least 80 km wide until flow ceased prior to 9600 BP. The ice stream surged into Parry Channel, covering 20,000 km2 with the Viscount Melville Sound Ice Shelf. Finally, Flow 2 drumlins on the northwest shore of M'Clintock Channel were cross-cut c . 9300 BP by advance of the grounded margin of a buoyant glacier (Flow 3), possibly an analogue of Flow 2 displaced farther south.  相似文献   

19.
《Sedimentary Geology》2007,193(1-4):59-69
Transverse kames, forming trains perpendicular to the direction of ice-sheet advance, are rare morphological elements in previously glaciated areas. The genesis of an example from the ice-contact zone of the Wartanian glaciation in eastern Poland is discussed. The transverse kames there form two main, distinctly separated, sub-parallel trains. Their sedimentary successions fill erosional troughs incised in the pre-Wartanian deposits on northern slopes. They consist of thick glaciofluvial sand and glaciofluvial/glaciolacustrine sandy/silty units that are covered with a thin, usually discontinuous, glacial till succession. The genesis of this kame type has been modelled. It is concluded that transverse kames developed in two phases: (1) erosion of the substratum in subglacial channels during initial deglaciation, and (2) glaciofluvial deposition in crevasses during advanced deglaciation (in the form of low-energy fans periodically submerged under stagnant water), followed locally by a cover of flowtills. Both the ablation of the ice and the accumulation of the kame deposits were controlled by the co-occurrence of ice zones either enriched or impoverished with sediment. Zonal enrichment of ice with debris was determined by the development of shear zones over substratum elevations that were inclined up-ice. The formation and subsequent infilling of crevasses both took place in zones of relatively clean ice, so that the resulting kames form a train perpendicular to the direction of ice movement.  相似文献   

20.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号