首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional methods that assessed the mercury (Hg) levels were not only an outcome of atmospheric pollution, but also the possibility of Hg contamination from the sample collection to laboratory analyses. Our studies used the direct mercury analyzer that measured Hg rapidly and precisely at ultra-trace concentrations with detection limit of 0.0015 ng g?1 on six favored desert plants and their surrounding soil in Kuwait. Analysis revealed elevated Hg concentrations in Tamarix chinensis Lour., and Salsola imbricate Forssk., among the chosen desert plants, especially during summer than in winter, thus labeling the qualities of a bio-indicator to Hg pollution. The overall parts-wise analysis on the six selected plants showed the elevated mean Hg concentrations in the leaves (0.89 ng g?1) followed by root (0.51 ng g?1) and stem (0.39 ng g?1) in the desert plants. Reasons attribute to the capability of these plant parts to absorb, accumulate, and assimilate Hg at varying concentrations. The overall mean Hg concentration was high in soil (2.24 ng g?1) in comparison with the mean Hg concentrations in the desert plants (0.60 ng g?1) irrespective of the two seasons. Translocation and bioaccumulation factors indicated low uptake of Hg translocation in the plant parts from the soil. Furthermore, the mean Hg concentration was found high in samples collected from Governorates (GIII) in comparison with the samples collected from other Governorates indicating the effect of pollution from various sources. The present study characterizes the selected plants as bio-indicators and also validates the impact of regional and seasonal variations to Hg pollution at ultra-trace levels in the arid ecosystem.  相似文献   

2.
Based on systematic sampling of soil around the coal-fired power plant (CFPP), the content of Hg was determined, using atomic fluorescence spectrometry. The result shows that the content of Hg in soil is different horizontally and vertically, ranges from 0.137 to 2.105 mg/kg (the average value is 0.606 mg/kg) and is more than the average content of Hg in Shaanxi, Chinese and world soil. In this study, spatial distribution and hazard assessment of mercury in soils around a CFPP were investigated using statistics, geostatistics and geographic information system (GIS) techniques. Ordinary kriging was carried out to map the spatial patterns of mercury and disjunctive kriging was used to quantify the probability of the Hg concentration higher than the threshold. The maps show that the spatial variability of the Hg concentration in soils was apparent. These results of this study could provide valuable information for risk assessment of environmental Hg pollution and decision support. An erratum to this article can be found at  相似文献   

3.
The distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China, were studied. Concentrations of Hg in top-soils, soil profiles and plant samples were measured with the method of hydride generation atomic fluorescence spectrometry after microwave digestion. Mercury species in soils were determined with the sequential extraction procedures based on Kingston method. Results showed that Hg concentrations in top-soils ranged from 49.8 to 1,685 ng g?1, with an average of 510 ng g?1 which was more than twice higher than the mercury limit (250 ng g?1 at pH < 6.5) of soil quality set for edible agricultural products in China (HJ 332-2006). High levels of Hg were found to mainly distribute in the top-soils from the northern, western and southern part of the estuary areas. Hg concentrations decreased with the increases of profile depths, except for one sample (S15) in which Hg level in the depth of 0–20 cm was found lower than that in the 20–40 cm. Hg in most of soil samples in non-mobile forms accounted for 46–82 % of total Hg in soils, while Hg in the mobile forms only 0.6–8.7 %. No significant correlation of Hg concentrations between the vegetables and the soils was observed in the studied areas, which indicates that the transfer factors could only reflect the abilities of Hg uptake and accumulation in a specific plant, but they are unsuitable to be used as the general indexes for the mobility and bioavailability of Hg in soils.  相似文献   

4.
Considerable fractions of the Hg content of lake and river systems in Scandinavia are discharged from the soil of the catchments. An important soil type in Scandinavia is the iron–humus podzol. The sorption characteristics of this soil type for inorganic Hg(II) and monomethyl mercury were investigated by batch experiments. The solubility of Hg2+ and CH3Hg+ in the soil horizons containing organic matter increases with increasing pH of the soil solution by favoring the formation of solute organic matter–mercury complexes. While the solubility of Hg2+ is strongly dependent on complexation to dissolved organic matter, the solubility of CH3Hg+ is more dependent on ion exchange. The concentration of solute inorganic Hg(II) increased with increasing temperature probably because of an increase in the concentration of dissolved organic carbon. There was no effect of temperature on the concentration of solute CH3Hg+. At pH values where inorganic mercury–hydroxo complexes are formed, inorganic Hg(II) is efficiently sorbed to the metal oxides of the mineral soil. The soil–water distributions of inorganic Hg(II) in the different soil horizons were described by Freundlich isotherms or linear isotherms for common and contaminated mercury contents in the soils.  相似文献   

5.
 Understanding the mechanisms of mercury evaporation from soil to the atmosphere is necessary for tracing the fate of mercury in the biological environment and for assessing potential health effects and the impact of anthropogenic mercury emissions on the environment. In this article an integrating overview of the current knowledge of the mechanisms of mercury evaporation is presented. Abiological and biological formation of Hg(0) and/or (CH3)2Hg in the uppermost soil layers are the rate limiting processes of mercury evaporation from soils in background areas; the evaporation rate in background areas is probably strongly influenced by deposited airborne mercury. The evaporation rate limiting factors in mercury enriched mineralized areas with large fractions of total mercury being volatile mercury species (relative to background soil in the non-mineralized vicinity) meteorological variations and the transport characteristics of soils for volatile mercury species. Mercury evaporation rates from background soils are usually <0.2 μg·m–2·h–1 and significantly smaller than from mercury-enriched mineralized areas. Received: 20 November 1995 / Accepted: 24 July 1996  相似文献   

6.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

7.
The Wabigoon River (Ontario, Canada) was affected by dams starting in 1898 and was polluted with pulp and paper mill wastes starting in 1913 and mercury from a chlor-alkali plant from 1962 to 1975. A dated sediment core from a riverine lake was analysed to investigate resultant changes in the biogeochemistry of mercury as revealed by variations in mercury isotope ratios and sediment chemistry. A total mercury maximum formed by the mercury pollution coincided with minimums in the δ-values of the 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, and 201Hg/202Hg ratios, and the δ-values decreased in the order δ201Hg > δ200Hg > δ199Hg > δ198Hg. Thus, mass-dependent fractionation caused depletion in lighter isotopes, implying evaporation of Hg(0) and pollution of the atmosphere as well as the river-lake system. Concurrently, mass-independent fractionation caused 199Hg enrichment, possibly reflecting an independently documented upsurge in methylmercury production, and 201Hg depletion, suggesting removal of methylmercury with anomalously high 201Hg/199Hg ratios by aquatic organisms and accumulation of 201Hg-depleted inorganic Hg(II) in sediments. The δ201Hg/δ199Hg ratio rose abruptly when mercury pollution began, reflecting the resultant increase in methylmercury production, and remained high but gradually declined as the pollution abated, paralleling trends shown by methylmercury in aquatic organisms. The δ201Hg/δ199Hg ratio of pre-1962 background mercury increased ca. 1898 and ca. 1913–1929, suggesting accelerated methylmercury production due to stimulation of microbial activities by the damming of the river and the input of pulp and paper mill wastes, respectively. Other variations were linked to economic and technological factors that affected pulp and paper manufacture.  相似文献   

8.
以淮南采煤沉陷区土壤为研究对象,测试分析了样品中汞的含量,结合土壤pH值、有机质含量特征,探讨了采煤沉陷区土壤中汞的时空分布特征。结果表明:与未沉陷区土壤相比,沉陷区土壤有机质破坏严重,最高下降了46%;采煤沉陷区土壤中汞的含量为0.013~0.050 mg/kg,平均值为0.027 mg/kg,69.7%的采样点超过了淮南市土壤背景值;沉陷8 a后土壤汞含量最高,为0.033 mg/kg,是未沉陷土壤汞含量的1.74倍,且随着沉陷时间的增加,土壤中汞存在富集趋势;水稻土壤汞富集能力最高,高于玉米和大豆土壤;在垂直剖面上,汞含量由表层向下依次降低;且汞与pH值表现出显著负相关,有机质与汞显著正相关。   相似文献   

9.
Forests play a primary role in the cycling and storage of mercury (Hg) in terrestrial ecosystems. This study aimed to assess differences in Hg cycling and storage resulting from different vegetation at two adjacent forest stands - beech and spruce. The study site Načetín in the Czech Republic's Black Triangle received high atmospheric loadings of Hg from coal combustion in the second half of the 20th century as documented by peat accumulation rates reaching 100 μg m−2 y−1. In 2004, the annual litterfall Hg flux was 22.5 μg m−2 y−1 in the beech stand and 14.5 μg m−2 y−1 in the spruce stand. Soil concentrations and pools of Hg had a strong positive relation to soil organic matter and concentrations of soil sulfur (S) and nitrogen (N). O-horizon Hg concentrations ranged from 245 to 495 μg kg−1 and were greater in the spruce stand soil, probably as a result of greater dry Hg deposition. Mineral soil Hg concentrations ranged from 51 to 163 μg kg−1 and were greater in the beech stand soil due to its greater capacity to store organic carbon (C). The Hg/C ratio increased with depth from 0.3 in the O-horizon to 3.8 μg g−1 in the C horizon of spruce soil and from 0.7 to 2.7 μg g−1 in beech soil. The Hg/C ratio was greater at all mineral soil depths in the spruce stand. The organic soil Hg pools in beech and spruce stands (6.4 and 5.7 mg m−2, respectively) were considerably lower than corresponding mineral soil Hg pools (39.1 and 25.8 mg m−2). Despite the important role of S in Hg cycling, differences in soil Hg distribution at both stands could not be attributed to differences in soil sulfur speciation.  相似文献   

10.
This study aims at assessing the extent of total mercury (Hg) contamination in urban and agricultural soils under long-term influence of a chlor-alkali plant, located at about 1 km away from a town centre. Moreover, it aims at identifying the main factors controlling Hg contents’ distribution and associated potential hazards to environment and human health. The median value of total Hg for soil surface layer (0–10 cm) was 0.20 mg/kg (data ranging from 0.050 to 4.5 mg/kg) and for subsurface layer (10–20 cm) 0.18 mg/kg (data ranging from 0.046 to 3.0 mg/kg). The agricultural area showed higher Hg concentrations (ranging from 0.86 to 4.5 mg/kg) than urban area (ranging from 0.05 to 0.61 mg/kg), with some results exceeding target values set by the Dutch guidelines. Mercury concentrations observed in the studied area are more likely to be associated with the influence of the chlor-alkali plant and with the use of historically contaminated sludges and water from a nearby lagoon in agriculture, than to the impacts of urban development. The statistical correlations between Hg concentrations and soil properties suggest that anthropogenic metal sources should influence the spatial distribution more than the geological properties. Although the Hg emissions were drastically reduced 10 years ago, the area under influence of the chlor-alkali plant is still facing potential health and environmental threats arising from soil contamination.  相似文献   

11.
In the initial period of mining activities in the Idrija basin (the16th and the first half of the17th centuries), Hg ore processing was performed at various small-scale roasting sites in the woods surrounding Idrija, by roasting ore in earthen vessels. The recovery rate of this method was very low; about half of Hg was lost, causing soil contamination and considerable amounts of waste material that could potentially leach Hg into the surrounding environment. The main aims of present geochemical study were to determine the contents, vertical distribution and speciation of Hg in soils at the roasting site at Frbej?ene trate in order to verify the extreme pollution of ancient Hg ore roasting sites in the Idrija area and to establish their significance in the wider spatial contamination of soils and aquatic systems. Soil sampling was performed at the area of the former roasting site. The organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results indicate extremely high Hg concentrations with a maximum of 37,000 mg/kg in SOM and 19,900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central area and decreased rapidly with distance. The results of Hg thermo-desorption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35–40%) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for persistent Hg release into the aquatic ecosystem.  相似文献   

12.
Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ± SE) of Hg deposition using these methods during the 91-day cold season in 2004–2005 at conifer sites showed that season-long throughfall Hg flux (1.80 μg/m2) < snowpack Hg (2.38 ± 0.68 μg/m2) < event throughfall flux (5.63 ± 0.38 μg/m2). Mercury deposition at the MDN site (0.91 μg/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0–64% of the total Hg mass in the snowpack) suggests that movement of Hg from the soil into the snowpack is possible. However, as with any tracer study the 202Hg tracer may not precisely represent the reactivity and mobility of natural Hg in soils.  相似文献   

13.
Wanshan mercury mine is the largest cinnabar deposit in Guizhou, China. Few effective methods had been achieved to remedy Hg heavily contaminated field soils. In this paper, a modified EK method with approaching cathodes (AC-EK) and an I/I2 lixiviant was described to remedy mercury-contaminated field soils near Wanshan mercury mine. Paddy Soil I and Paddy Soil II were sampled and contained 576.73 ± 45.50 and 491.35 ± 4.73 mg/kg Hg, respectively. Although they contained 6.9 and 9.4% organic matter respectively, more than 92 and 89% Hg were removed by AC-EK within 5 days. Removal ratio increased by 0.21 and 0.68 times using EK process with ACs over that with one single cathode (SC-EK). AC-EK method saved nearly 26.4–28.1% electric power as compared to SC-EK method. As an I/I2 lixiviant solution was used to solubilize HgS(HgO) during EK process, the bonding of Hg to organic functional S groups should be less important than the binding to inner sites of organic matter in soil. The relationship between EK remediation effect and soil organic matter content was fitted to a linear model. It turned out that when soil OM increased by 1.0%, EK removal ratio (%) of Hg would decrease by 2.63%.  相似文献   

14.
A detailed assessment of elements was carried out at a power plant rated at approximately 760 MW of electricity using western Canadian subbituminous coal. The concentrations of elements of environmental concern (As, Cd, Cr, Hg, Ni, and Pb) in milled coals, ashes, stack-emitted materials. Speciation of As, Cr, and Ni were determined. The polyaromatic hydrocarbons (PAHs) emitted from the stack were also measured. The rates of input of elemental input for As, Cd, Cr, Hg, Ni, and Pb were 28, 0.94, 230, 0.44, 44, and 88 kg/day, respectively; of which only 0.16, 0.01, 0.40, 0.27, 0.15, and 0.04 kg/day, respectively, were stack emitted. The total stack emission of toxic elements is 1.02 kg/day, with Cr being the highest contributor to this group with 0.4 kg/day. However, Hg at 0.27 kg/day has the highest percentage rate of emission at about 60%, while Cd has the lowest at about 1%. The electrostatic precipitator (ESP) removes a significant portion of the elements indicated by their relative enrichment (RE) ratios greater than 0.7. The results show that most of the elements in milled coal are low compared to world coals and other Canadian milled coals.Mercury is mostly ( 81%) emitted as gaseous elemental mercury (GEM), with 19% as reactive gaseous mercury (RGM). Particulate mercury is very low and averages about 0.1% of the total mercury at this station. Most of the arsenic in the milled coal is primarily associated with pyrite or as arsenate in its less toxic form of As+5 (> 95%). In both bottom and fly ashes, more than 95% of the total arsenic is present as As+5. Chromium in the milled coal and bottom ash is mostly non-toxic (Cr+3). The more toxic Cr+6 comprise less than 5% of the total Cr in the ESP fly ash and the stack-emitted ash. Nickel in milled coal and ashes is in the form of non-toxic Ni+2, predominantly in coordination with oxygen.The emitted PAHs include acenapthene, fluorene, 2-methyl-fluorene, phenathrene, anthracene, fluoanthene, and pyrene; which are emitted from stack at the combined rate of 3.6 g/day. The concentrations of elements of environmental concern (As, Cd, Hg, Ni, and Pb) emitted to the atmosphere by the power plant in the zone of maximum impact at ground level are lower than those listed in the Health Guidelines of the USEPA and Canadian National Air Pollution Surveillance. This is based on stable meteorological conditions, down wind from the power plant for a maximum distance of 3 km.  相似文献   

15.
Within the management hierarchy of municipal solid waste (MSW), incineration with energy recovery is a desired and viable option often used in densely populated and economically developed cities. The gaseous and particulate mercury (Hg) emitted from MSW incinerators may accumulate in the soil entering via dry and wet deposition. To investigate the soil Hg level and estimate the effects of the local meteorological and topographical characteristics (e.g., winds and terrain) on the soil Hg distribution, two layers of soil samples around an MSW incinerator in Shenzhen, China were collected and analyzed. Results showed that the Hg levels ranged from 0.012 to 0.136 mg kg−1 and from 0.013 to 0.100 mg kg−1 in the surface and subsurface soils, respectively. Long-term exposure of the soil to atmospheric Hg from the MSW incinerator dominates the spatial pattern of soil Hg. The wind frequency directly affected Hg distribution but not decisively. Interestingly, the variations of Hg level with downwind distance away from the stack were highly consistent with the terrain profile (r 2: 0.412–0.748). The effects of winds and terrain on soil Hg distribution and their mechanisms are discussed and general Hg dispersion patterns for transport on terrain are further proposed.  相似文献   

16.
Atmospheric mercury deposition on snow at springtime has been reported in polar regions, potentially posing a threat to coastal and inland ecosystems receiving meltwaters. However, the post-depositional fate of Hg in snow is not well known, and no data are available on Hg partitioning in polar snow. During snowmelt, we conducted a survey of Hg concentrations, partitioning and speciation in surface snow and at depth, over sea ice and over land along a 100 km transect across Cornwallis Island, NU, Canada. Total Hg concentrations [THg] in surface snow were low (less than 20 pmol L−1) and were significantly higher in marine vs. inland environments. Particulate Hg in surface snow represented up to 90% of total Hg over sea ice and up to 59% over land. At depth, [THg] at the snow/sea ice interface (up to 300 pmol L−1) were two orders of magnitude higher than at the snow/lake ice interface (ca. 2.5 pmol L−1). Integrated snow columns, sampled over sea-ice and over land, showed that particulate Hg was mostly bound to particles ranging from 0.45 to 2.7 μm. Moreover, melting snowpacks over sea ice and over lake ice contribute to increase [THg] at the water/ice interfaces. This study indicates that, at the onset of snowmelt, most of the Hg in snow is in particulate form, particularly over sea ice. Low Hg levels in surface snow suggest that Hg deposited through early spring deposition events is partly lost to the atmosphere from the snowpack before snowmelt. The sea ice/snow interface may constitute a site for Hg accumulation, however. Further understanding of the cycling of mercury at the sea ice/snow and sea ice/seawater interfaces is thus warranted to fully understand how mercury enters the arctic food webs.  相似文献   

17.
Sixty-four species of vascular plants were tested for their ability to release volatile mercury. Rates ranged from 0.001 to 39.5 μg.kg?1.hr?1 depending upon species and method of measurement. Of 13 monocot families 9 contained at least one species capable of Hg emission and of 19 dicot families, 14 possessed this ability.  相似文献   

18.
Combined treatment with electroremediation and sulphate reducing bacteria (SRB) was tested in laboratory and pilot scale. The contaminated soil came from a chlor-alkali factory and contained about 100 mg/kg Hg. Iodide/iodine complexing agent was used to mobilize mercury. Mercury iodide complexes were moved to the anode solution using an electric field. The anode solution was then mixed with hydrogen sulphide (H2S) containing water, causing precipitation of mercury sulphide. The H2S was produced at site by a SRB reactor. Precipitation problems arising from the nature of the anode solution were expected, since this solution is highly acidic, very oxidised and may contain iodide/iodine that strongly complexes mercury and can hinder mercury sulphide precipitation. Mercury concentrations in the anode solution were up to 65.7 mg/L (field) and 15.4 mg/L (lab. scale). Reduction of mercury in the water was >93% at all times. Iodide did not hinder the process: Nonetheless, in the lab system, iodide concentration was high in the anode solution but mercury reduction was> 99.9%. The redox potential was sufficiently low for HgS precipitation during the experiments, except for a short period, when the mercury removal decreased to 94%. Sulphate reducing bacteria are shown as a viable tool for the treatment of mercury contaminated, acidic, oxidative, iodide containing water, such as that produced by electrokinetic remediation. A second SRB step or other water treatment is required to reduce the mercury concentration to environmentally acceptable levels. Redox potential is the most sensitive factor in the system.  相似文献   

19.
Mercury accumulation in the food chain, as a consequence of gold recovery in Brazil, has been an issue of concern. Reactions of Hg in the environment are quite complex, and can involve various Hg chemical species. Laboratory experiments were carried out on Hg0 solubility, Hg complexation and sorption on river sediments from a gold mining region in Brazil. The reactivity and the mobility of Hg species were considered. Results indicate that methyl mercury is more mobile than ionic mercury, and that the presence of humic acid enhances drastically the solubility of Hg0. The soluble complex formed has a relatively lower interaction at the sediment/water interface and is more prone to spread through the aquatic environment.  相似文献   

20.
This study was performed to identify the individual and combined effects of the most important parameters that control mercury (Hg) emissions from soil surfaces: temperature, UV-B exposure, and soil water content. Both soil temperature and UV-B exposure positively affected Hg emissions; however, the increment in Hg emissions was significantly different between wet and dry soils. Mercury emissions from wet soil were more sensitive to an increase in soil temperature than dry soil; however, at constant temperature dry soil emissions were more sensitive than wet soil to changes in UV-B exposure. It was also observed that even after the relative humidity in the soil pores (RHsp) dropped to nearly 0, the Hg emissions were still higher for initially wet soil than for dry soil, suggesting that initially high water content continued to promote Hg reduction mechanisms for an extended period. These results show the interacting effects of soil moisture with other important parameters. At constant water content, Hg emissions increased the most when the soil was exposed to UV-B radiation, followed by UV-A radiation. With UV-C exposure, atmospheric Hg deposition and O3 destruction were simultaneously observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号