首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

3.
We present a Seasonal Sensitivity Characteristic (SSC) of Vatnajökull (Iceland), which consists of the sensitivity of the mean specific mass balance to monthly perturbations in temperature and precipitation. The climate in Iceland is predominantly maritime (high precipitation) although often the polar air mass influences the area. This results in temperature sensitivities that are high in summer and nearly zero during the winter months. In contrast, precipitation sensitivities are high in winter and low in summer. We use the SSC of Vatnajökull as a reduced mass balance model, with which we reconstruct the mass balance of Vatnajökull since 1825. The reduced model shows that changes in temperature and precipitation like the ones observed both have a significant impact upon the mass balance. The reconstructed mass balance records for two Icelandic glaciers correlate very well with mass balance records that are extracted from length records with a linear inverse model. This places confidence in both the reduced (forward) mass balance model and in the inverse model, although the forward method produces larger mass balance variations than the inverse method. For the south of Vatnajökull we find that after 1900, the length record is well explained by temperature variations alone, while another Icelandic glacier (Sólheimajökull) was also influenced by precipitation variations.  相似文献   

4.
ABSTRACT. We have studied a 33.7 m deep ice core from a small polythermal Scandinavian ice cap to determine whether it is possible to recover pre-20th century climatic information from the glacier. Ice structural studies show a significant change from clear ice above 11 m depth (superimposed ice indicating refreezing) to bubbly ice below 11 m depth, indicating this is the transition between Little Ice Age (LIA) and 20th century ice. Calculations with a Nye-age model, along with a mass balance reconstruction, show that this structural boundary likely formed in the last part of the LIA, which in this region ended about 1910. The ice below this boundary was sampled and analysed for stable isotopic composition and ionic content, which both show significant variations with depth. The stable isotope record likely contains cycles of annual duration during the LIA. The chemistry in the ice core indicates that the information is useful, and can be used to interpret climatic and environmental variables during the LIA. A comparison of Riukojietna ion chemistry and oxygen isotope records with similar records from other glaciers in this region reveals a clear continental-maritime gradient. Changes in this gradient with time may be possible to resolve using such ice core records. Results from this study demonstrate that ice cores from glaciers in this climatic environment can be useful in revealing environmental conditions from climatically colder periods and yield pre-industrial benchmark values for chemical loading and oxygen isotopes, but that hiatuses complicate the depth-age relationship.  相似文献   

5.
This paper reviews the evidence and history of glacier fluctuations during the Little Ice Age (LIA) in the Canadian Rockies. Episodes of synchronous glacier advance occurred in the 12th–13th, early 18th and throughout the 19th centuries. Regional ice cover was probably greatest in the mid-19th century, although in places the early 18th century advance was more extensive. Glaciers have lost over 25% of their area in the 20th century. Selective preservation of the glacier record furnishes an incomplete chronology of events through the 14th–17th centuries. In contrast, varve sequences provide continuous, annually resolved records of sediments for at least the last millennium in some highly glacierized catchments. Such records have been used to infer glacier fluctuations. Evaluation of recent proxy climate reconstructions derived from tree-rings provides independent evidence of climate fluctuations over the last millennium. Most regional glacier advances follow periods of reduced summer temperatures, reconstructed from tree rings particularly ca. 1190–1250, 1280–1340, 1690s and the 1800s. Reconstructed periods of higher precipitation at Banff, Alberta since 1500 are 1515–1550, 1585–1610, 1660–1680 and the 1880s. Glacier advances in the early 1700s, the late 1800s and, in places, the 1950–1970s reflect both increased precipitation and reduced summer temperatures. Negative glacier mass balances from 1976 to 1995 were caused by decreased winter balances. The glacier fluctuation record does not contain a simple climate signal: it is a complex response to several interacting factors that operate at different timescales. Evaluation of climate proxies over the last millennium indicates continuous variability at several superimposed timescales, dominated by decade–century patterns. Only the 19th century shows a long interval of sustained cold summers. This suggests that simplistic concepts of climate over this period should be abandoned and replaced with more realistic records based on continuous proxy data series. The use of the term LIA should be restricted to describing a period of extended glacier cover rather than being used to define a period with specific climate conditions.  相似文献   

6.
By stepwise regression analysis the accumulation, ablation, and equilibrium line altitude (ELA) were modelled by circulation indices and spring‐summer temperature on six Norwegian glaciers (Ålfotbreen, Nigardsbreen, Rembesdalsskåka, Storbreen, Hellstugubreen and Gråsubreen). The circulation indices were derived from a gridded monthly mean sea level pressure (MSLP) data set, whereas temperature series were derived from instrumental and proxy data. Analyses showed that accumulation on the western glaciers was strongly related to western airflow perpendicular to the main mountain range releasing precipitation on the glaciers. No other airflow variable significantly improved the regression. For the continental glaciers, circulating air in connection with low pressure systems was also found to be important. This may explain the lack of synchronicity in the glaciers' development in southern Norway during the Holocene. Accumulation was better modelled using the MSLP data set than by using the North Atlantic Oscillation (NAO) index as predictor. The decadal variations of accumulation, ablation, and ELA were analysed by a Gaussian low pass filter. The well‐known abundant accumulation on Norwegian glaciers during the early 1990s turned out to be unprecedented during the entire series (since 1781), whereas the accumulation of the 1960s has not been lower since the early 19th century according to model results. Ablation increased significantly from the mid‐19th century to the 1930s. The ablation maximum during the 1930s has not yet been exceeded. Also the 1930s show extremely high ELA values.  相似文献   

7.
The variation of the equilibrium line altitude can be used as an indicator for glacier mass balance variability. Snow lines at the end of the ablation period are suitable proxies for the annual equilibrium line altitude on glaciers. We investigate snow lines at Purogangri ice cap on the central Plateau in order to study the interannual variability of glacier mass balance. Datasets of the daily Moderate Resolution Imaging Spectroradiometer snow product MOD10A1 were used to infer transient snow line variability during 2001–2012 and to derive regional‐scale, annual equilibrium line altitude. The Moderate Resolution Imaging Spectroradiometer snow albedo embedded within the snow product was compared with high‐resolution Landsat imagery. An albedo threshold was established to differentiate between ice and snow and the 13th percentile of the altitudes of snow‐covered pixels was chosen to represent the snow line altitude. The second maximum of the snow line altitudes in the ablation period was taken as a proxy for the annual equilibrium line altitude. A linear correlation analysis was carried out (1) between interannual variability of the equilibrium line altitude at Purogangri ice cap and various climate elements derived from the High Asia Reanalysis, and (2) between interannual variability of the equilibrium line altitude and the circulation indices North Atlantic Oscillation and Indian Summer Monsoon. Results suggest that air temperature and meridional wind speed above ground in July, as well as the lower tropospheric zonal wind in June and August play a crucial role in the development of the annual equilibrium line altitude.  相似文献   

8.
9.
Jan Mayen is a small (373 km2) remote island in the Norwegian Sea. One third of it is covered by glaciers, all located on the Beerenberg volcano. There have been at least two Holocene periods of glacier expansion at Jan Mayen. The first may have taken place around 2500 B.P. Some glaciers had their maximum extent during the second period, around 1850 A.D. They have subsequently shown an oscillating retreat, with marked expansion around 1910, and with a minimum extent around 1950. Many glaciers advanced again around 1960. The advance of Sørbreen probably culminated around 1965. The climate appears to have been more arctic-continental than today during these two periods of glacier advances, caused by expanded pack ice cover in the East Greenland current and strong influence from the Greenland-Arctic high pressure area. The interplay between the high pressure area and the low pressure tracks in the North Atlantic Ocean determines the climate over the north-western part of the Atlantic, and this results in parallel climate and glacier variations within this region. We conclude, contrary to previous reports, that the advances of the glaciers around 1960 were caused by reduced summer temperatures and ablation, and not by increased precipitation.  相似文献   

10.
The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.  相似文献   

11.
Geo-electrical resistivity surveys have been carried out at recently deglaciated sites in front of three glaciers in southern Iceland: Skeiðarájökull, Hrútárjökull, and Virkisjökull. The results show the presence of old glacier ice beneath debris mantles of various thickness. We conclude that buried glacier ice has survived for at least 50 years at Virkisjökull and Hrútárjökull, and probably for over 200 years at Skeiðarájökull. Additional data from a further site have identified a discontinuous ice core within 18th-century jökulhlaup deposits. Photographic and lichenometric evidence show that the overlying debris has been relatively stable, and hence melting of the ice at all four sites is proceeding slowly due to the heat-shielding properties of the overburden. The geomorphic implications are pertinent when considering the potential longevity of buried ice. The possible implications for dating techniques, such as lichenometry, radiocarbon dating and cosmogenic surface-exposure dating are also important, as long-term readjustments of surface forms may lead to dating inaccuracy. Finally, it is recognised that landscape development in areas of stagnant ice topography may post-date initial deglaciation by a considerable degree.  相似文献   

12.
The subject of this study is the ephemeral relief of the edge of one of the Vatnajökull outlet glaciers, called Sidujökull, developed in the shape of dirt cones. Special attention has been paid to the distribution of these forms, influenced by the existence of a system of fissures, supraglacial channels and shear planes in the glacier surface, and to the origin of covering material and development of conical forms. Taking into account the main process of ablation and the shape, a suggestion is made to use the term ‘ablation cone’ instead of ‘dirt cone’.  相似文献   

13.
During the initial stages of the November 1996 jökulhlaup at Skeiðarárjökull, Iceland, floodwaters burst onto the glacier surface via a series of fractures. This supraglacial drainage led to the formation of a number of distinct ice surface depressions, one of which is investigated in detail. The morphology and structural characteristics of this feature are described, as well as the sedimentology of an associated assemblage of debris-filled fractures. This work suggests that debris-charged subglacial floodwaters travelled up to the glacier surface, where supraglacial flow occurred initially via an extensive network of fractures, orientated parallel to the glacier margin. Supraglacial discharge became progressively more focused into a series of discrete outlets, leading to the mechanical erosion of a number of depressions on the glacier surface. The associated transfer of subglacially derived floodwaters to high levels within the glacier resulted in the rapid entrainment of large volumes of sediment which may influence the patterns, processes and products of ice-marginal sedimentation in the future.  相似文献   

14.
This work describes the temperature trends of the Nuuk fjord area during the last century and analyses the spatial variability of temperature and precipitation along the coast‐inland gradient of the region. A better understanding of the climate of the coastal region of Greenland is important for ice sheet studies since significant thinning has recently been detected on local outlet glaciers with driving factors still to be identified. The glaciological reconstruction of the ice sheet mass balance has often made use of climate datasets from the coastal stations to substitute missing data from the inland areas. The information on the coast‐inland gradient of temperature and precipitation hereafter provided is of relevance in other areas around the ice sheet as it represents a mean for increasing the accuracy of historical glacier‐climate interactions. We therefore discuss climatological information from the automatic station that operated at the glacier throughout the 1980s as well as from other stations located along the fjord and with a longer coverage.  相似文献   

15.
Abstract Small, stagnating ice caps at high latitudes are particularly sensitive to climatic fluctuations, especially with regard to changes in ablation season temperature. We conducted mass balance measurements and GPS area surveys on four small High Arctic plateau ice caps from 1999–2002. We compared these measurements with topographic maps and aerial photography from 1959, and with previously published data. Net mass balance (bn) of Murray Ice Cap was ?0.49 (1999), ?0.29 (2000), ?0.47 (2001), and ?0.29 (2002), all in meters of water equivalent (m w.eq.). The mass balance of nearby Simmons Ice Cap was also negative in 2000 (bn=?0.40 m w.eq.) and in 2001 (bn=?0.52 m w.eq.). All four ice caps experienced substantial marginal recession and area reductions of between 30 and 47% since 1959. Overall, these icecaps lost considerable mass since at least 1959, except for a period between the mid‐1960s and mid‐1970s characterized regionally by reduced summer melt, positive mass balance, and ice cap advance. The regional equilibrium line altitude (ELA) is located, on average, above the summits of the ice caps, indicating that they are remnants of past climatic conditions and out of equilibrium with present climate. The ice caps reached a Holocene maximum and were several times larger during the Little Ice Age (LIA) and their current recession reflects an adjustment to post‐LIA climatic conditions. At current downwasting rates the ice masses on the Hazen Plateau will completely disappear by, or soon after, the mid‐21st century.  相似文献   

16.
The retreat of 293 glaciers in the Tien Shan Mountains (Kyrgyz Republic) from their maximum extent during the Little Ice Age (LIA) is estimated using aerial photographs from 1980 to 1985 and maps at a scale of 1:25000, constructed during period 1956–1990. Two indices of changes are used: the linear distance from the glacier terminus to its Little Ice Age moraine and the difference in absolute elevation of the terminus and the moraine. Historical information about the front positions of glaciers in the 1880s to the 1930s was used as an indirect control of remote sensing data. The age of moraines in key regions was estimated by lichenometry. On average, Tien Shan glaciers have retreated by 989 ± 540 m since the LIA maximum. Their front elevations (dh) rose by 151 ± 105 m. These changes are similar to changes observed in the Alps and western Norway, Pamir‐Alay and Koryak plateau, but greater than in east Siberia over the same interval. Differences between four regions in Tien Shan (northern, western, inner, central) are generally small, though in the northern Tien Shan the glacier retreat and frontal rise are more prominent (1065 ± 479 m and 215 ± 140 m, respectively).  相似文献   

17.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

18.
Snow deposition and redistribution are major drivers of snow cover dynamics in mountainous terrain and contribute to the mass balance of alpine glaciers. The quantitative understanding of inhomogeneous snow distribution in mountains has recently benefited from advances in measuring technologies, such as airborne laser scanning (ALS). This contribution further advances the quantitative understanding of snow distribution by analysing the areas of maximum surface elevation changes in a mountain catchment with large and small glaciers. Using multi‐annual ALS observations, we found extreme surface elevation changes on rather thin borders along the glacier margins. While snow depth distribution patterns in less extreme terrain have presented high inter‐annual persistence, there is little persistence of those extreme glacier accumulations between winters. We therefore interpret the lack of persistence as the result of a predominance of gravity‐driven redistribution, which has an inherently higher random component because it does not occur with all conditions in all winters. In highly crevassed zones, the lidar‐derived surface elevation changes are caused by a complex interaction of ice flux divergence, the propagation of crevasses and snow accumulation. In general, the relative contribution of gravitational mass transport to glacier snow cover volume was found to decrease for glaciers larger than 5 km2 in the investigated region. We therefore suggest that extreme accumulations caused by gravitational snow transport play a significant role in the glacier mass balance of small to medium‐size glaciers and that they may be successfully parameterized by simple mass redistribution algorithms, which have been presented in the literature.  相似文献   

19.
Landform–sediment assemblages associated with two ice-dammed lakes, one active and one fossil, at Heinabergsjökull in southeast Iceland are described. The current ice-dammed lake (Vatnsdalur) is dominated by a large aggradational terrace, as well as an excellent suite of shorelines. The second fossil ice-dammed lake dates from the Neoglacial maximum of Heinabergsjökull ( c . 1887) and drained during the late 1920s. This lake is associated with a suite of shorelines and ice-marginal glaciolacustrine fans. The sedimentology of one of these fans is described. Between 50 and 70% of the sediment succession is dominated by ice-rafted sediment, although rhythmites, matrix-rich gravels, sands and graded sand–silt couplets are also present. A range of intra-formational, soft-sediment deformation structures are present, consistent with liquefaction and deformation associated with loading, current shear, and iceberg calving. The landform–sediment assemblages described from Heinabergsjökull provide important data for the interpretation of Pleistocene ice-dammed lakes.  相似文献   

20.
Abstract The age of recent deposits can be determined using an intrinsic characteristic of the lichen ‘population’ growing on their surface. This paper presents a calibrated dating curve based on the gradient of the size‐frequency distribution of yellow‐green Rhizocarpon lichens. The dating potential of this new curve is tested on surfaces of known age in southeast Iceland. This particular size—frequency technique is also compared with the more traditional largest‐lichen approach. The results are very encouraging and suggest that the gradient can be used as an age indicator, at least on deposits formed within the last c. 150 years – and probably within the last c. 400 years – in the maritime subpolar climate of southeast Iceland. Using both lichenometric techniques, revised dates for moraines on two glacier forelands are presented which shed new light on the exact timing of the Little Ice Age glacier maximum in Iceland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号