首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1 INTRODUCTIONIn recent years, the concePt of long-term sustained use of reservoirs has been addressed because areservoir is very much considered to be a nonrenewable resource (Morris and Fan, l998). Technically,many options for reservoir sedAnentation control can be utlized to pursue the sustainable develoPment ofwater resources. In general, reduction of incoming sedimen yields from watersheds is often emPloyedin conjunction with hydraulic methods such as flushing or density currnt vot…  相似文献   

2.
Alternate bars were formed by sediment transport in a flume with Froude-modelled flow and relative roughness characteristic of gravel-boulder channels with steep slopes. The flume (0.3 m wide × 7.5 m long) was filled with a sand-gravel mixture, which was also fed into the top of the flume at a constant rate under constant discharge. Channel slope was set at 0.03. Initially, coarse particles accumulated on incipient bar heads near one side of the flume and diverted flow and bedload transport across the flume toward a pool scoured against the opposite flume wall downstream. Sorting in the pool directed coarse particles onto the next bar head downstream. Alternate sequences of pools and coarse bar heads were thereby linked down the entire flume by interactions of sediment sorting, flow, and channel morphology. During episodes of bar construction, unsorted bedload invaded interior bar surfaces and was deposited. Persistent deposition of coarse particles on bar heads prevented downstream migration of bars by inhibiting bar-head erosion and bedload transport over bars. Likely factors leading to bar-head stabilization in modelled gravel-bed channels are coarse mixed-size sediment, steep channel gradients, and shallow depths.  相似文献   

3.
A series of controlled laboratory experiments were conducted in order to obtain precise data on the hydraulic and sediment transport conditions during rill formation. Tests were carried out using a crusting-prone binary mixed soil in a 15 m long flume at an average slope of 0·087 under simulated rainfall. Rainfall intensities varied from 30–35 mm h?1 and developed about 70 per cent of the kinetic energy of natural rainfall of similar intensity. Runoff and sediment discharge measured at the downstream weir were strongly influenced by rill forming processes. Essentially, rill incision reduced runoff discharge as a result of increased percolation in rill channels but increased sediment discharge. Secondary entrainment processes, such as bank collapse, also increased sediment discharge at the weir. Knickpoint bifurcation and colluvial deposition, however, decreased sediment discharge. Rills always developed through the formation of a knickpoint. The critical condition for knickpoint initiation was the development of supercritical flow and waves which mould and incise the bed. Prior smoothing of the soil surface by entrainment and redistribution of sediment facilitated supercritical flow. Statistical analysis showed that hydraulic and sediment transport conditions differed significantly in rilled and unrilled flows. The relationship between sediment discharge, rill erosion, and flow hydraulics was found to be nonlinear, conforming to a standard power function in the form y = axb. Rills were also associated with significantly increased sediment transport capacities. However, rill initiation was not clearly defined by any specific hydraulic threshold. Instead, rilled and unrilled flows were separated by zones of transition within which both types of flow occur.  相似文献   

4.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Most downstream hydraulic geometry exponents have been found to be very close to the classic values reported by Leopold and Maddock (1953). These have been viewed as the simplified cases to general trends because the hydraulic geometry of alluvial channels is actually the product of ‘multivariate controls’ (Richards, 1982). This paper is an attempt to develop a soundly based foundation for the explanation of the physical mechanisms of these controls. A quantitative relationship between channel shape and boundary shear distribution developed from experimental flume results is found to be applicable in some instances to alluvial channels, particularly to stable canals. On the basis of this relationship, it is shown that downstream hydraulic geometry is determined not only by flow discharge, but also by channel slope, channel average roughness and sediment composition of the channel boundary. This is strongly supported by our analysis of 529 observations from both stable canals and natural rivers in the U.S.A. and the U.K. The difference between regime relations in canals and the hydraulic geometry of rivers appears to be caused mainly by channel slope and average roughness, which can be regarded as constants only in stable canals. The close relationship between discharge and channel average roughness observed in canals is not repeated in natural channels, partly because of the variety of flow values used to define the channel-forming discharge. Furthermore, it is indicated that the effects of the sediment composition of the channel boundary on hydraulic geometry are significant and need further investigation.  相似文献   

6.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

8.
Flume studies were conducted in order to evaluate the influence of slope, sediment size, discharge and inflow sediment concentration on sediment deposition by overland flow. Additionally, experiments were carried out to measure transport capacity of overland flow at low slopes, using a wide range of discharges. The experimental data show that the hydraulic conditions where net deposition occurs can be divided into two domains. The first domain is characterized by hydraulic conditions where transport capacity is not significant. In the second domain net deposition still occurs but transport capacity is significant. The size of the latter domain is dependent on the sediment size distribution, on the hydraulic roughness and on the inflow sediment concentration. The experiments clearly indicate the necessity of incorporating a threshold value in any deposition equation. These experiments demonstrate that shear stress is a valuable threshold for deposition modelling. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Rock fragments can act as a controlling factor for erosional rates and patterns in the landscape. Thus, the objective of this study is to better understand the role that rock fragments incorporated into the soil matrix play in concentrated flow hydraulics and erosion. Laboratory flume experiments were conducted with soil material that was mixed with rock fragments. Rock fragment content ranged from 0 to 40 per cent by volume. Other treatments were slope (7 and 14%) and flow discharge (5·7 and 11·4 l min?1). An increase in rock fragment content resulted in lower sediment yield, and broader width of flow. Rock fragment cover at the soil surface, i.e. surface armour, increased with time in experiments with rock fragments. Flow energy was largely dissipated by rock fragment cover. For more turbulent flow conditions, when roughness elements were submerged in the flow, hydraulic roughness was similar for different rock fragment contents. In experiments with few or no rock fragments a narrow rill incised. Flow energy was dissipated by headcuts. Total sediment yield was much larger than for experiments with rock fragments in the soil. Adding just a small number of rock fragments in the soil matrix resulted in a significant reduction of sediment yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Three different methods to analyse fine sediment deposits on a gravel bar using pictures are presented in this paper. A manual digitization and deposits zone delineation are performed as well as two different automated procedures. The three methods are applied on aerial pictures taken in 2006 by a drone from a height around 150 m above the study site. Two other sets of pictures taken in 2010 are also studied: the first set was obtained from the left side bank of the river at approximately 15m above the gravel bar whereas the second one was taken from a helicopter flying 600~m above the ground. These methods were used to estimate the surface of fine sediment deposits before and after flushing events. They yield similar results even if the first automated procedure is able to capture smaller patches of fine sediments. The total surface of fine sediment deposits seems to be similar before and after a flushing event, but the distribution appears quite different. Before a flushing event, a significant amount of fine sediment deposits are mixed with coarser sediments. After the flushing event, one can observe more large fine sediment deposits located on the downstream part of the secondary channel and at the channel margin. Most of the small fine sediment deposit patches were washed out. A short discussion is provided on the possible dynamics of fine sediment deposits over the gravel bar.  相似文献   

11.
I INTRODUCTIONThe number of dam constructions has increased during the last decades, pafticularly in the tropics andsemi-arid areas where high sediment yields are prominent, and therefore also the problems of reservoirsedimentation. In 1900 there were 42 large dams, i.e. higher than 15 m, while in 1950 and 1986 therewere 5,268 and about 39,000 respectively (ICOLD, 1988). In the period 1975 to 1990, the regions withthe largest increase of large dams were Central and South America, Asia …  相似文献   

12.
Flushing sediment through a reservoir has been practiced successfully and found to be inexpensive in many cases. However, the great amount of water consumed in the flushing operation might affect the water supply. To satisfy the water demand and water consumed in the flushing operation, two models combining the reservoir simulation model and the sediment flushing model are established. In the reservoir simulation model, the genetic algorithm (GA) is used to optimize and determine the flushing operation rule curves. The sediment‐flushing model is developed to estimate the amount of the flushed sediment volume, and the simulated results update the elevation‐storage curve, which can be taken into account in the reservoir simulation model. The models are successfully applied to the Tapu reservoir, which has faced serious sedimentation problems. Based on 36 years historical sequential data, the results show that (i) the simulated flushing operation rule curves model has superior performance, in terms of lower shortage index (SI) and higher flushing efficiency (FE), than that by the original reservoir operation; (ii) the rational and riskless flushing schedule for the Tapu reservoir is suggested to be set within an interval of every 2 or 4 years in the months of May or June. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
High sediment concentrations in runoff are a characteristic feature of the Chinese Loess Plateau, and are probably caused by factors such as the occurrence of erodible materials on steep slopes, the characteristics of the loess and the harsh climate that results in low plant cover. When sediment concentration increases, fluid density increases, viscosity increases and settling velocity decreases. These effects become increasingly important with increasing concentration and can result in flow behaviour that is quite different from that of clear water flow. Although the net effect of these changes on the flow is not always apparent, erosion models that deal with high sediment concentrations should consider such effects and could include corrections for some of these effects. A case study in a small catchment on the Loess Plateau indicated that sediment concentrations were considerable, and literature data suggested that for such sediment concentrations, corrections for settling velocity, fluid density and viscosity are needed. Furthermore, a number of corrections are necessary to be able to compare field measurements with results of soil erosion models: sediment volume should be subtracted from runoff volume and a density correction is needed to use data from a pressure transducer. For flumes that were used to measure discharge from smaller areas inside the catchment, the measured water level should be corrected by subtracting the sediment level in the flume from the water level, while the sediment volume should also be subtracted from the discharge. Finally, measured concentration should be corrected to give concentration expressed as grams per litre of clear water, since soil erosion models express sediment concentration in this way. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

15.
Lewis and Clark Lake is located on the main stream of the Missouri River. The reservoir is formed behind Gavins Point dam near Yankton, South Dakota, U.S.A. The Lewis and Clark Lake reach extends about 40 km from the Gavins Point dam. The reservoir delta has been growing since the closure of Gavins Point dam in 1955 and has resulted in a 21% reduction of storage within the maximum pool of the reservoir. Among several sediment management methods, drawdown flushing has been recommended as a possible management technique. The engineering viability of removing sediments deposited in the lake should be examined by numerical modeling before implementing a drawdown flushing. GSTARS4 was used for this study and calibrated by using measured data from 1975 to 1995. Channel cross-section changes and amount of flushed sediment were predicted with four hypothetical flow scenarios. The flushing efficiencies of all scenarios were estimated by comparing the ratios between water consumption and flushed sediment during flushing.  相似文献   

16.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This study has hypothesized that for many rivers the trade-off between flow accumulation and the decrease in slope along channel length means that stream power increases downstream and, moreover, that given the low slope angles in headwater and low-order streams, they would have insufficient stream power to erode let alone transport sediment. The study considered the stream power profile, the particle travel distances and the application of the Hjulström curve based on the velocity profile of nine, large UK catchments. The study showed that:
  1. Some rivers never showed a maximum in their longitudinal stream power profile, implying that some rivers never develop a deposition zone before they discharge at the tidal limit.
  2. Particle travel distances during a bankfull discharge event showed that for some rivers 91% of the upper main channel would not be cleared of sediment. Furthermore, while some rivers could transport a 2 mm particle their entire length in one bankfull event, for another river it would take 89 such events.
  3. The Hjulström curve shows that for three of the study rivers the upper 20 km of the river was not capable of eroding a 2 μm particle.
  4. The study has shown that for all rivers studied, erosion is focused downstream and deposition upstream. Many UK rivers have a dead zone where, on time scales of the order of centuries, no erosion or transport occurs and erosion only occurs in the lower courses of the channel where discharge rather than slope dominates – we propose these as underpowered rivers.
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

19.
1.IN~DUCTIONTurbiditycurrentisoneclassofflowsnameddensitycurrentorgravitycurrent(therHunterRouse(Yih(1980)),whichdePictstheintmsionofheaVyfluidintoalighterone.Usually,thedensitydifferencebetWeentWonuidisrelativelysmallandmixingacrosstheimerfaceoccurs.ThedrivingforceofdensitycurrentsisnotdensitydifferenceitselfbutthedifferenceinspeCmcweights.Turbiditycurrentisnamedwhenthedensitydifferenceisespeciallycausedbysuspendedfinesedimentparticles.Sincesediment-ladenflowcaninteraCtwiththelowerbou…  相似文献   

20.
In an open channel, a sudden rise in water level induces a positive surge, or bore, that may develop as a hydraulic jump in translation. When the surge propagates against an adverse slope, it decelerates until it becomes a stationary hydraulic jump. Both hydraulic jumps and decelerating surges induce some intense turbulent mixing and have some major impact on the sediment transport in natural systems. Herein, a physical investigation was conducted in a relatively large rectangular channel. Hydraulic jumps and surges were generated by the rapid closure of a gate at the channel downstream end. The turbulent shear stresses were measured with high temporal and spatial resolution (200 Hz sampling rate) in the jump flow. A comparison between the stationary hydraulic jump, hydraulic jump in translation and decelerating surge measurements showed some marked differences in terms of turbulent mixing. The results highlighted some intense mixing beneath the jump front and roller for all configurations. The levels of turbulent stresses were one to two orders of magnitude larger than a critical threshold for sediment motion. The findings provide some insights into the hydraulic jump migration processes in mobile bed channels, and the complex transformation from a moving jump into a stationary jump. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号