首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current sheets have been suggested as the site for flare energy release because they can convert magnetic energy very rapidly into both heat and directed plasma energy. Also they contain electric fields with the potential of accelerating particles to high energies.The basic properties of current sheets are first reviewed. For instance, magnetic flux may be carried into a current sheet and annihilated. An exact solution for such a process in an infinitely long sheet has been found; it describes the annihilation of fields which are inclined at any angle, not just 180°. Moreover, field lines which are expelled from the ends of a current sheet can be described as having been reconnected. The only workable model for fast reconnection in the solar atmosphere, namely Petschek's mechanism, has recently been put on a firm foundation; it gives a reconnection rate which depends on the electrical conductivity but is typically a tenth or a hundredth of the Alfvén speed. A current sheet may be formed when the sources of an initially potential field start to move; a simple analytic technique for finding the position and shape of such a sheet in two dimensions now exists. Finally, a sheet with no transverse magnetic field component is subject to the tearing-mode instability, which rapidly produces a series of loops in the field.The main ways in which current sheets have been used for solar flare models is described. Syrovatskii's mechanism relies on the increase of the electric current density during the formation of a sheet, to a value in excess of the critical value j * for the onset of microinstabilities. But Anzer has recently demonstrated that the critical value is most unlikely to be reached during the initial formation process. Sturrock, on the other hand, has advocated the occurrence of the tearing-mode instability in an open streamer-like configuration (which may result from the eruption of a force-free field). But recent observations do not point to that as the relevant configuration. Rather, they suggest that flares are triggered by the emergence of new magnetic flux from below the solar photosphere. This has led Heyvaerts, Priest, and Rust (1976) to propose a new emerging flux model, according to which, as more and more flux emerges, so reconnection occurs, producing some preflare heating. When the current sheet reaches such a height (around the transition region) that its current density exceeds j *, then the impulsive phase of the flare is triggered. The main phase is caused by an enhanced level of magnetic energy conversion in a turbulent current sheet. The type of flare depends on the magnetic environment in which the emerging flux finds itself. A surge flare results if the flux appears near a strong unipolar region such as a simple sunspot, whereas a two ribbon flare may be produced by flux emergence near an active region filament, in which case the main phase energy is released from the field that surrounds the filament.  相似文献   

2.
吴宁  李燕  沈呈彩  林隽 《天文学进展》2012,30(2):125-158
从理论和观测两个方面来介绍和讨论出现在太阳爆发过程中的磁重联电流片及其物理本质和动力学特征。首先介绍在理论研究和理论模型中,磁重联电流片是如何在爆发磁结构当中形成并发展的,对观测研究有什么指导意义。然后介绍观测工作是从哪几个方面对理论模型预测的电流片进行证认和研究的。第三,将介绍观测研究给出了哪些过去所没有能够预期的结果,这些结果对深入研究耀斑一CME电流片以及其中的磁重联过程的理论工作有什么重要的、挑战性的意义。第四,讨论最新的与此有关的理论研究和数值实验。最后,对未来的研究方向和重要课题进行综述和展望。  相似文献   

3.
A. I. Podgorny 《Solar physics》1989,123(2):285-308
The energy of a solar flare can be accumulated as the magnetic energy of the current sheet created in the vicinity of a magnetic field singular line by the focusing of disturbances. Conditions which define the singular line in general were obtained using the properties of a singular line as it focuses disturbances. Numerical simulations and an analytical model show the possibility of the creation of a stable current sheet which becomes unstable after a quasistationary evolution. The nonlinear development of the instability leads to a fast reconstruction of the magnetic field with the release of a substantial part of the magnetic energy. The longitudinal magnetic field in our experiment increases the sheet thickness by at most a factoring of ten.  相似文献   

4.
We employ a 2 1/2-dimensional reconnection model to analyse different aspects of the energy release in two-ribbon flares. In particular, we investigate in which way the systematic change of inflow region variables, associated with the vertical elongation of current sheet, affects the flare evolution. It is assumed that as the transversal magnetic field decreases, the ambient plasma-to-magnetic pressure ratio increases, and the reconnection rate diminishes. As the transversal field decreases due to the arcade stretching, the energy release enhances and the temperature rises. Furthermore, the magnetosonic Mach number of the reconnection outflow increases, providing the formation of fast mode standing shocks above the flare loops and below the erupting flux rope. Eventually, in the limit of a very small transversal field the reconnection becomes turbulent due to a highly non-linear response of the system to small fluctuations of the transversal field. The turbulence results in the energy release fragmentation which increases the release efficiency, and is likely to be responsible for the impulsive phase of the flare. On the other hand, as the current sheet stretches to larger heights, the ambient plasma-to-magnetic pressure ratio increases which causes a gradual decrease of the reconnection rate, energy release rate, and temperature in the late phase of flare. The described magnetohydrodynamical changes affect also the electron distribution function in space and time. At large reconnection rates (impulsive phase of the flare) the ratio of the inflow-to-outflow magnetic field strength is much smaller than at lower reconnection rates (late phase of the flare), i.e., the corresponding loss-cone angle becomes narrower. Consequently, in the impulsive phase a larger fraction of energized electrons can escape from the current sheet downwards to the chromosphere and upwards into the corona – the dominant flare features are the foot-point hard X-ray sources and type III radio bursts. On the other hand, at low reconnection rates, more particles stay trapped in the outflow region, and the thermal conduction flux becomes strongly reduced. As a result, a superhot loop-top, and above-the-loop plasma appears, as sometimes observed, to be a dominant feature of the gradual phase.  相似文献   

5.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

6.
The occurrence of modulational instability in the current sheet is investigated. Particular attention is drawn to the plasma micro-instability in this current sheet (i.e., the diffusion region) and its relation to the flare process. It is found that the solitons or strong Langmuir turbulence is likely to occur in the diffusion region under solar flare conditions in which the electric resistivity could be greatly enhanced by several orders of magnitude in this diffusion region. The result is a significant heating and stochastic acceleration of particles. Physically, the occurrence of soliton and strong Langmuir turbulence can be identified with a sudden eruption of an electric current leading to a local vacuum in which an electric potential is formed and results in the release of a huge amount of free energy. A numerical example is used to demonstrate the transition of the magnetic field, velocity, and plasma density from the outer MHD region into the diffusive (resistive) region and, then, back out again with the completion of the energy conversion process. This is all made possible by an increase of resistivity by 4–5 orders of magnitude over the classical value.  相似文献   

7.
8.
It has been shown that the main problems of the circuit theory of solar flares - unlikely huge current growth time and the origin of the current interruption - have been resolved considering the case of magnetic loop emergence and the correct application of Ohm's law. The generalized Ohm's law for solar flares is obtained. The conditions for flare energy release are as follows: large current value, > 1011 A, nonsteady-state character of the process, and the existence of a neutral component in a flare plasma. As an example, the coalescence of a flare loop and a filament is considered. It has been shown that the current dissipation has increased drastically as compared with that in a completely ionized plasma. The current dissipation provides effective Joule heating of the plasma and particle acceleration in a solar flare. The ion-atom collisions play the decisive role in the energy release process. As a result the flare loop resistance can grow by 8–10 orders of magnitude. For this we do not need the anomalous resistivity driven by small-scale plasma turbulence. The energy release emerging from the upper part of a flare loop stimulates powerful energy release from the chromospheric level.  相似文献   

9.
A numerical simulation method is used to show the possibility of forming a current sheet in the solar corona in an active region with four magnetic poles. The evolution of the quasi-stationary current sheet can lead to its transfer to an unsteady state. The MHD instability of this sheet causes its decay, accompanied by a set of events which characterizes the solar flare. The electrodynamical model of a solar flare includes a system of field-aligned currents typical of a magnetospheric substorm. Several events in substorms and solar flares are explained by the generation of field-aligned currents.  相似文献   

10.
A review of current questions related to the problem of large solar flares is given. The basic physical principles applied in numerical simulation of flares are presented and illustrated. The main attention is given to the phenomenon of magnetic reconnection in large-scale current layers at separators of magnetic field in the corona. This phenomenon is demonstrated within the framework of the Rainbow topological model. The model provides the possibility of explaining specific features of large-scale reconnection as a physical process that makes it possible to accumulate large energy in the form of the magnetic energy of current layers before a flare and to quickly transform this energy to the kinetic energy of particles during a flare. The secondary effects in the solar atmosphere caused by energy fluxes from reconnecting current layers are also discussed. These consequences of the primary energy release are responsible for the flare pattern observed in X-ray, optical, UV, and other spectral ranges.  相似文献   

11.
Litvinenko  Yuri E.  Craig  I.J.D. 《Solar physics》1999,189(2):315-329
The problem of pressure limitations on the rate of flux pile-up magnetic reconnection is studied. We first examine the recent suggestion of Jardine and Allen (1998) for moderating the build-up of magnetic pressure in the current sheet by considering inflows with nonzero vorticity. An analytic argument shows, however, that unbounded magnetic pressures in the limit of small resistivities can be avoided only at the cost of unphysical dynamic pressures in the plasma. Hence, the pressure limitation on the reconnection rate in a low-beta plasma cannot be avoided completely. Nevertheless, we demonstrate that reconnection can be more rapid in a new solution that balances the build-up in dynamic pressure against both the plasma and magnetic pressures. This exact MHD solution has the characteristics of merging driven by the coalescence instability. The maximum energy release rate of the model is capable of explaining a modest solar flare.  相似文献   

12.
Preflare current sheets in the solar atmosphere   总被引:1,自引:0,他引:1  
Neutral current sheets are expected to form in the solar atmosphere when photospheric motions or the emergence of new magnetic flux causes oppositely directed magnetic fields to be pressed together. Magnetic energy may thus be stored slowly in excess of the minimum energy associated with a purely potential field and released suddenly during a solar flare. For simplicity, we investigate the neutral sheet which forms between two parallel line dipoles when either the distance between them decreases or their dipole moments increase. It is found that, when the dipoles have approached by an amount equal to a tenth of their original separation distance, the stored energy is comparable with that released in a major flare. In addition, a similarity solution for one-dimensional magnetohydro-dynamic flow within such a neutral sheet is presented; it demonstrates that rapid conversion of magnetic energy into heat is possible provided conditions at the edge of the neutral sheet are changing sufficiently quickly.  相似文献   

13.
A new method for the calculation of coronal magnetic field is proposed and it is shown to reproduce the EUV features in the corona as observed by Skylab experiments satisfactorily well. One of the remarkable points is that it reproduces the loopy threads in the active region corona and also the large scale field lines connecting active regions. The existence of coronal current is expected wherever the present coronal-current-free model fails to represent the feature. A method of calculating the coronal sheet-current is also developed with the purpose of knowing the shape of the current sheet and the amount of magnetic stress energy stored due the the presence of it by comparing the calculated field configuration with the observed local distortion of the EUV threads. This may be used in pinning down the possible site of the flare and in discussing the flare occurrence in terms of the energy stored there.During the preparation of this work, Poletto et al. (1975) calculated the magnetic field shape in Schmidt's method to compare with the soft X-ray feature obtained by Skylab.  相似文献   

14.
The reconnecting current sheet model for energy accumulation and release during solar flares results in the flare frequency distribution that is a power-law function of total flare energy, with the index 7/4 for sufficiently large energies. The distribution is predicted to be much steeper in the low-energy region, implying the significance of microand nanoflares for coronal heating.  相似文献   

15.
Assuming that basic plasma processes associated with magnetospheric substorms and solar flares are similar and thus assuming also that a flare ribbon is produced by the impact of field-aligned current-carrying electrons on the chromosphere, a chain of processes leading to solar flares is considered, including the dynamo process in the photospheric level in the vicinity of bipolar sunspots, the formation of a sheet current in the lower coronal level, the interruption of the sheet current, the subsequent diversion of it to the chromosphere, the development of a potential drop along magnetic field lines, the acceleration of current-carrying electrons and their impact on the chromosphere, producing a pair of flare ribbons.  相似文献   

16.
A flare model based on force-free currents in the solar atmosphere is considered. The energy of the flare is supposed to be stored as magnetic energy in the current system. If the current density exceeds a certain critical limit an over-voltage may arise in the circuit which will give rise to a rapid release of the stored energy. At the end of the paper some results yielded by the model are compared with observational evidence of flares.  相似文献   

17.
Gamma-ray emission extending to energies greater than 2 GeV and lasting at least for two hours as well as 0.8–8.1 MeV nuclear line emission lasting 40 min were observed with very sensitive telescopes aboard the GAMMA and CGRO satellites for the well-developed post-flare loop formation phase of the 3B/X12 flare on June 15, 1991. We undertook an analysis of optical, radio, cosmic-ray, and other data in order to identify the origin of the energetic particles producing these unusual gamma-ray emissions. The analysis yields evidence that the gamma-rays and other emissions, observed well after the impulsive phase of the flare, appear to be initiated by prolonged nonstationary particle acceleration directly during the late phase of the flare rather than by a long-term trapping of energetic electrons and protons accelerated at the onset of the flare. We argue that such an acceleration, including the acceleration of protons up to GeV energies, can be caused by a prolonged post-eruptive energy release following a coronal mass ejection (CME), when the magnetic field above the active region, strongly disturbed by the CME eruption, relaxes to its initial state through magnetic reconnection in the coronal vertical current sheet.  相似文献   

18.
Jun Lin 《Solar physics》2004,222(1):115-136
Kopp–Pneuman-type magnetic configurations, which include a vertical current sheet, with various background fields are investigated. Dissipation of the current sheet as a result of magnetic reconnection produces bright flare ribbons on the solar disk and a growing flare loop system in the corona. In principle, the growth of flare loop system is governed by a reconnection process only, and the behavior of flare ribbons is also controlled by the background field. The flare ribbons may appear either separate or attached to one another at the onset of the flare depending on the background field distribution on the boundary surface. We calculate the decrease in height that magnetic field lines undergo after they have reconnected to form closed loops. Following previous practice, we refer to this decrease as field line shrinkage. Unlike the motions of flare ribbons, the shrinkage of flare loops depends weakly on the background field. Individual loops always shrink fastest at the moment it is produced by reconnection and just starts to leave the current sheet. The earlier the loop forms, the more and faster it shrinks. The relevant observations are explained on the basis of our calculations, and the aspects of the explanation that need improvement are also discussed.  相似文献   

19.
We analyze the relationship between the dynamics of the coronal mass ejection (CME) of 15 May 2001 and the energy release in the associated flare. The flare took place behind the east limb and was disclosed by a growing system of hot soft X-ray (SXR) loops that appeared from behind the limb around the onset of the rapid acceleration of the CME. The highly correlated behavior of the SXR light-curve derivative and the time profile of the CME acceleration reveals an intrinsic relationship between the CME dynamics and the flare energy release. Furthermore, we found that the CME acceleration peak occurs simultaneously with the fastest growth (100 km s-1) of X-ray loops, indicating that the reconnection plays an essential role in the eruption. Inspecting the CME/flare morphology we recognized in the Yohkoh-SXT images an oval feature that formed within the rising structure at the onset of the rapid acceleration phase, simultaneously with the appearance of the X-ray loops. The eruptive prominence was imbedded within the lower half of the oval, suggestive of a flux-rope/prominence magnetic configuration. We interpret the observed morphological evolution in terms of a reconnection process in the current sheet that presumably formed below the erupting flux-rope at the onset of the CME acceleration. Measurements of the tip-height of the cusped X-ray loop system and the height of the lower edge of the oval, enable us to trace the stretching of the current sheet. The initial distance between the oval and the loops amounted to 35 – 40 Mm. In about 1 h the inferred length of the current sheet increased to 150 – 200 Mm, which corresponds to a mean elongation speed of 35 – 45 km s-1. The results are discussed in the framework of CME models that include the magnetic reconnection below the erupting flux-rope.  相似文献   

20.
This review summarizes new trends in studies of magnetic reconnection in solar flares. It is shown that plasmoids play a very important role in this primary flare process. Using the results of magnetohydrodynamic and particle-in-cell simulations, we describe how the plasmoids are formed, how they move and interact, and how a flare current sheet is fragmented into a cascade of plasmoids. Furthermore, it is shown that during the interactions of these plasmoids electrons are not only very efficiently accelerated and heated, but electromagnetic(radio) emission is also produced.We also describe possible mechanisms for the triggering of magnetic reconnection.The relevant X-ray and radio signatures of these processes(such as radio drifting pulsation structures, narrowband dm-spikes, and the loop-top and above-the-loop-top X-ray sources) are then described. It is shown that plasmoids can also be formed in kinked magnetic ropes. A mapping of X-points of the magnetic reconnection on the chromosphere(as e.g. a splitting of flare ribbons) is mentioned. Supporting EUV and white-light observations of plasmoids are added. The significance of all these processes for the fast magnetic reconnection and electron acceleration is outlined. Their role in fusion experiments is briefly mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号