首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
It has been established that large ferromanganese deposits enriched in noble metals, Co, U, V, and REE in the Kimkan sedimentary basin are confined to Vendian–Cambrian black shales. Lithostratigraphy plays an important role in the localization of such deposits and promising ore-bearing fields. Deposits and occurrences of complex iron and ferromanganese ores are polygenous and polychronous, because they underwent intense hydrothermal alterations with the superposition of noble metal and uranium mineralization in the Cretaceous. Efficient utilization of complex iron ores in the Kimkan open pit needs the construction of a metallurgical plant.  相似文献   

2.
The geochemical and Sm–Nd isotope characteristics of Late Precambrian and Early Cambrian sandstones previously related to the sedimentary cover of the Dzabkhan continental block are reported. It is established that the Riphean and Vendian sedimentary rocks of the Ul’zitgol’skaya and Tsaganolomskaya Formations were accumulated within the Dzabkhan continental block as a result of recycling of the terrigenous deposits formed at the expense of destruction of basement rocks and younger granite. The formation of terrigenous rocks of the Bayangol’skaya Formation after a gap in sedimentation occurred in the sedimentary basin, where only the Late Riphean formations of the juvenile crust, probably of the Dzabkhan–Mandal block were the sources, without the contribution of the ancient crustal material. The Tsaganolomskaya and Bayangol’skaya Formations were formed in different sedimentary basins and cannot be related to the same complex.  相似文献   

3.
The composition and structure of principal key-sections for the Tira (Late Vendian) and Danilovo (Late Vendian-Early Cambrian) Horizons were characterized on the basis of deep-drilling data and studies of natural outcrops along the peripheries of the Kureika syneclise. The typical sedimentary formations/associations were recognized, their vertical and lateral successions were distinguished, and their deposition environments were interpreted. A distribution pattern scheme of thicknesses and depositional environments of Upper Vendian-Lower Cambrian deposits was compiled at the 1: 1000000 scale. The reservoir characteristics of the formations are discussed and forecasted for poorly studied areas of the northwestern Siberian platform.  相似文献   

4.
The results of investigations of Upper Vendian?Lower Cambrian deposits in the northeastern part of the Baltic monocline specify views on the evolution of depositional environments of sedimentary successions constituting the basal part of the sedimentary cover in inner areas of the northwestern East European Platform. It is shown that the Late Vendian and initial Cambrian were characterized by the consecutive influx of relatively mature terrigenous detrital material that originated from both the weathering crust of the Baltic Shield and new sources. Its deposition was interrupted by notable, although likely asynchronous, hiatuses, which are registered at the base of the Upper Vendian Vasileostrovskaya and Voronkovo formations and Lower Cambrian Lomonosov Formation. In the Late Vendian, sedimentary material was transported from the Baltic Shield, while beginning from the initial Early Cambrian the additional contribution to the formation of the sedimentary cover of the Baltic monocline was provided by coarse-grained sedimentary material from the Timan margin of the Baltica as follows from U?Pb isotopic ages obtained for detrital zircons. At the same time, lithogeochemical parameters of fine-grained rocks experienced no substantial changes.  相似文献   

5.
The results of investigations of gneissose hornblende granitoids, which intrude terrigenous deposits of the Murandav Formation of the Khingan Group and which were deformed together with them due to later structural transformations, are given. It is shown that by their geochemical properties these granitoids are comparable with granitoids of type I and are 535 ± 6 Ma old (U?Pb method on zircons). The obtained data indicate that dikes of hornblende granites, which intrude terrigenous rocks of the Murandav Formation of the Khingan Group and are deformed together with them, were embedded at the Cambrian and Ediacaran transition. The assumption that terrigenous deposits of the Khingan Group (at least the Murandav and underlying Igincha formations) were accumulated in the Neoproterozoic is supported.  相似文献   

6.
The first results of U–Pb geochronological studies of acid volcanic rocks from the Oktyabrsk Complex of the Mamyn Terrane, which had previously been conventionally attributed to the Late Proterozoic, are reported. It is established that rhyodacite of the Gar’–Dzheltulak volcanic field has Late Vendian age (546 ± 14 Ma) and trachyrhyodacite of the Kosmatinsk field has Late Cambrian age (490 ± 2 Ma). As a whole, the data obtained indicate two stages of acid volcanism on the Mamyn Terrane of the eastern part of the Central Asian Fold Belt covering the boundary between the Paleozoic and Neoproterozoic, as well as the Late Cambrian. Based on the geochemical peculiarities of rocks, it may be assumed that the early stage of volcanism was controlled by subduction, whereas the late stage was governed by riftogenic processes.  相似文献   

7.
The first results of geochemical and Sm–Nd isotope–geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian–Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin “block” of the South Mongolian–Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.  相似文献   

8.
The geochemical features of typical representatives of ferromanganese deposits are studied in the eastern Bureya and Khanka massifs (Russian Far East). Based on the major-, trace-, and rare-earth element distribution, the hydrothermal–sedimentary (with hydrogenic component) nature of their mineralization is established and the geodynamic setting and depth of ore formation are estimated. The differences in the depth and redox conditions of ore formation resulted in the metallogenic zonation of the Khingan block (Bureya Massif), which is expressed in a westward change in ore composition from the magnetite ores of the Kosten’ga–Kimkan zone to the hematite–magnetite and iron–manganese ores of the South Khingan zone. The conclusions about the participation of hydrothermal sources in the formation of ore mineralization of the studied deposits and the specifics of their localization require revision of the strategy of exploration and evaluation of ferromanganese ores in the southern Far East.  相似文献   

9.
The results of geological and geochemical studies of terrigenous rocks of the main stratigraphic subdivisions in the northeastern flank of the South Mongolia–Khingan orogenic belt and also the results of U-Pb (LА-ICP-MS) geochronological studies of detrital zircons from these deposits are presented. It is demonstrated that the studied rocks differ significantly in the nature of distribution of detrital zircon ages and, consequently, they cannot be members of a single sedimentary sequence. The data obtained confirm the standpoint according to which the northeastern flank of the South Mongolia–Khingan orogenic belt represents a “joint” zone separating the Argun and the Bureya-Jiamusi Superterranes. This joint zone was formed as the result of closure of the oceanic basin separating the specified continental massifs in the Paleozoic era. The geochemical features of the studied rocks indicate their formation in the conditions of the island arc or the active continental margin. Lack of zircon generations younger than Ordovician age in the studied samples allows assuming that the sedimentary sequences identified within the northeastern flank of the studied belt as the Necla, Dagmara, siltstone-sandstone, and Gramatukha sequences that formed from the end of the Vendian (?) to the Devonian correspond to the youngest stages of belt formation. These sediments in the current structural plan evidently represent fragments of accretion complexes cropping out in fragments among the Cenozoic sequences of the Amur-Zeya Depression.  相似文献   

10.
We present results of lithofacies, reservoir, geochemical, well logging, and petrophysical studies of the key section of the Vendian–Lower Cambrian Preobrazhenka productive horizon in the Lena–Tunguska province. We have considered the composition, structure, and formation conditions of the deposits as well as the intensity of postsedimentation processes and the rock geochemistry, petrophysics, and reservoir properties.  相似文献   

11.
The dramatic diversification of animal groups known as the Cambrian Explosion (evolution's ‘Big Bang’) remains an unsolved puzzle in Earth Science. The Vendian–Cambrian interval is characterized by anomalously high rates of apparent plate motion, interpreted as True Polar Wander (TPW), and by more than a dozen large, high-frequency perturbations in carbon isotopes that dwarf all others observed through the past 65 million years. We suggest that these biological, tectonic, and geochemical events are intimately related in the following fashion. First, tropical continental margins and shelf-slopes which formed during fragmentation of the supercontinent Rodinia accumulated massive quantities of isotopically-light organic carbon during Late Neoproterozoic time, as indicated by strikingly heavy isotope ratios in inorganic carbon during interglacial intervals. Second, an initial phase of Vendian TPW moved these organic-rich deposits to high latitude, where conditions favored trapping biogenic methane in layers of gas hydrate and perhaps permafrost. Continued sedimentation during Late Vendian time added additional hydrate/gas storage volume and stabilized underlying units until the geothermal gradient moved them out of the clathrate stability field, building up deep reservoirs of highly pressurized methane. Finally, a burst of TPW brought these deposits back to the Tropics, where they gradually warmed and were subjected to regional-scale thermohaline eddy variation and related sedimentation regime changes. Responding to the stochastic character of such changes, each reservoir reached a critical failure point independently at times throughout the Cambrian. By analogy with the Late Paleocene Thermal Maximum event, these methane deposits yield transient, greenhouse-induced pulses of global warming when they erupt. Temperature correlates powerfully with biodiversity; the biochemical kinetics of metabolism at higher temperature decrease generation time and maintain relatively rich and dense invertebrate populations. Repeated thermal pulses along with progressive disruption and alteration of global ocean circulation patterns by TPW could cause the increase in diversity that accompanied the radiation of metazoans. We suggest that a methane ‘fuse’ ignited the Cambrian Evolutionary Explosion.  相似文献   

12.
Packages of Late Paleozoic tectonic nappes and associated major NE-trending strike-slip faults are widely developed in the Altai–Sayan folded area. Fragments of early deformational phases are preserved within the Late Paleozoic allochthons and autochthons. Caledonian fold-nappe and strike-slip structures, as well as accompanying metamorphism and granitization in the region, are typical of the EW-trending suture-shear zone separating the composite Kazakhstan–Baikal continent and Siberia. In the Gorny Altai region, the Late Paleozoic nappes envelop the autochthon, which contains a fragment of the Vendian–Cambrian Kuznetsk–Altai island arc with accretionary wedges of the Biya–Katun’ and Kurai zones. The fold-nappe deformations within the latter zones occurred during the Late Cambrian (Salairian) and can thus be considered Salairian orogenic phases. The Salairian fold-nappe structure is stratigraphically overlain by a thick (up to 15 km) well-stratified rock unit of the Anyui–Chuya zone, which is composed of Middle Cambrian–Early Ordovician fore-arc basin rocks unconformably overlain by Ordovician–Early Devonian carbonate-terrigenous passive-margin sequences. These rocks are crosscut by intrusions and overlain by a volcanosedimentary unit of the Devonian active margin. The top of the section is marked by Famennian–Visean molasse deposits onlapping onto Devonian rocks. The molasse deposits accumulated above a major unconformity reflects a major Late Paleozoic phase of folding, which is most pronounced in deformations at the edges of the autochthon, nearby the Kaim, Charysh–Terekta, and Teletskoe–Kurai fault nappe zones. Upper Carboniferous coal-bearing molasse deposits are preserved as tectonic wedges within the Charysh–Terekta and Teletskoe–Kurai fault nappe zones.Detrital zircon ages from Middle Cambrian–Early Ordovician rocks of the Anyui–Chuya fore-arc zone indicate that they were primarily derived from Upper Neoproterozoic–Cambrian igneous rocks of the Kuznetsk–Altai island arc or, to a lesser extent, from an Ordovician–Early Devonian passive margin. A minor age population is represented by Paleoproterozoic grains, which was probably sourced from the Siberian craton. Zircons from the Late Carboniferous molasse deposits have much wider age spectra, ranging from Middle Devonian–Early Carboniferous to Late Ordovician–Early Silurian, Cambrian–Early Ordovician, Mesoproterozoic, Early–Middle Proterozoic, and early Paleoproterozoic. These ages are consistent with the ages of igneous and metamorphic rocks of the composite Kazakhstan–Baikal continent, which includes the Tuva-Mongolian island arc with accreted Gondwanan blocks, and a Caledonian suture-shear zone in the north. Our results suggest that the Altai–Sayan region is represented by a complex aggregate of units of different geodynamic affinity. On the one hand, these are continental margin rocks of western Siberia, containing only remnants of oceanic crust embedded in accretionary structures. On the other hand, they are represented by the Kazakhstan–Baikal continent composed of fragments of Gondwanan continental blocks. In the Early–Middle Paleozoic, they were separated by the Ob’–Zaisan oceanic basin, whose fragments are preserved in the Caledonian suture-shear zone. The movements during the Late Paleozoic occurred along older, reactivated structures and produced the large intracontinental Central Asian orogen, which is interpreted to be a far-field effect of the colliding East European, Siberian, and Kazakhstan–Baikal continents.  相似文献   

13.
This work presents the data on the structure, geochronology, and formation settings of the Ordovician sedimentary and volcanogenic-sedimentary complexes of the Sterlitamak, Mariev, and Imanburluk structural and formational zones located in the western and northwestern frames of the Kokchetav massif (Northern Kazakhstan). In addition, the results of detailed stratigraphic, geochemical, and geochronological studies of the reference section of the Ordovician deposits of the Mariev Zone are given. The studied section is composed of carbonate, terrigenous, and less commonly volcanogenic-sedimentary deposits, confined to a wide stratigraphic interval from Tremadocian Stage of the Lower Ordovician to the lower Sandbian Stage of the Upper Ordovician. For the first time, the study of conodont assemblages made it possible to establish the Early to Middle Ordovician age of the most ancient limestone–dolomite sequence, which was previously conventionally attributed to the Cambrian. The above-lying tuffaceous–terrigenous Kupriyanovka Formation is now attributed to the Middle Ordovician. On the basis of compositional features of the lithoclastic tuffs composing the middle part of the formation, we assume that it was formed within the island arc zone. Limestones from the base of the youngest terrigenous–carbonate Kreshchenovka Formation are attributed to the lower part of the Sandbian Stage of the Upper Ordovician. The study of the geochronology of detrital zircons from terrigenous rocks of the limestone–dolomite sequence has shown that the Early Neoproterozoic quartzite–schist sequences of the Kokchetav massif were the most probable provenance area during its deposition. It was established that there was the change of sedimentation environments from closed lagoons to a relatively deep sea basin with normal salinity and intense circulation of water masses in the northwestern frame of the Kokchetav massif during the Ordovician. During this period of time, there was a sufficiently high level of erosion of provenance areas that resulted in the deposition of thick strata of terrigenous material. A general tendency of the deepening of sedimentation environments from the Early to Late Ordovician was interrupted by sea level rises in the Dapingian and early Darriwilian ages.  相似文献   

14.
New data on geochemical features of the Lower Paleozoic terrigenous rocks in the Mamyn terrane (eastern Central Asian Fold Belt) and U–Pb geochronological studies of the detrital zircon from these rocks are presented. The obtained results suggest the following conclusions. 1. At present, the Kosmataya sequence includes different age Lower Cambrian terrigenous–carbonate and Lower Ordovician terrigenous rocks or represents Lower Ordovician olistostromes including limestone blocks with the Lower Cambrian fauna. Lower Ordovician terrigenous rocks were formed in an island arc or active continental margin, mainly, owing to the erosion of Cambrian–Early Ordovician plutons and volcanics that are widespread in structures of the Mamyn terrane and weakly reworked by the chemical weathering. 2. The Silurian Mamyn Formation was developed at a passive continental margin. The main sources of clastic material for this formation were the same Cambrian–Early Ordovician igneous rocks as for the Cambrian sequence, with the participation of Early Silurian and Vendian igneous complexes. The obtained data significantly refine concepts about the geological structure of the Mamyn terrane, which is a member of the Argun Superterrane, one of the largest tectonic structures in the eastern Central Asian Fold Belt.  相似文献   

15.
Geochemical and isotopic (Sm–Nd and Sr) studies of deposits of the Baikal and Oselok Groups in the southern Siberian Craton and LA-ICP-MS U–Pb dating of detrital zircons show that they accumulated in passive continental-margin settings in the Vendian. The time limits of sedimentation were assessed on the basis of Sr chemostratigraphy of carbonate deposits of the Baikal Group and LA-ICP-MS U–Pb dating of detrital zircons in first-cycle terrigenous deposits of the Oselok Group. The main provenances for rocks of these groups were constant. These were rocks of the cover and basement of the Siberian Craton. Tuffite horizons in upper portions of the groups are the only sign of Late Vendian activation of this block, which is reflected in changes of geochemical indices of terrigenous rocks and their younger Sm–Nd model ages.  相似文献   

16.
The results of U—Th—Pb (LA-ICP-MS) geochronological studies of detrital zircons from terrigenous rocks of the Dzhida terrane of the Central Asian Fold Belt (CAFB) are presented. The data obtained allow us to distinguish the following age maxima (Ma): 578 and 634 (Vendian); 720, 823, and 919 (Late Riphean); 1922, 2090, 2225, and 2321 (Early Proterozoic). A number of zircons have Late Archean age in the interval of 2670–2980 Ma. Taking into account Late Cambrian age (504–506 Ma) of intrusive rocks that intruded the Dzhida terrane, a possible sedimentation period of sequences of this terrane is estimated to be in the interval of 580–510 Ma (from Vendian to Late Cambrian). The possible provenance areas of terrigenous sediments are proposed and the previously proposed models of geodynamic evolution of the Dzhida terrane are correlated with new geochronological data.  相似文献   

17.
The Vendian–Lower Cambrian tectonomagmatic activation took place in the northeastern Siberian Craton, within the Olenek Uplift and in the Kharaulakh segment of the Verkhoyansk fold-and-thrust belt (the lower reaches of the Lena River). The Early Paleozoic volcanic activity in the Olenek Uplift is expressed in the form of basitic diatremes, small basaltic covers, and doleritic dikes and sills intruding and covering the Upper Vendian carbonate deposits. The material specificity of the Lower Cambrian basites and their mantle sources, jointly with the Vendian–Cambrian sedimentation history, gives reason to consider the Lower Cambrian riftogenesis and the associated magmatism as a consequence of the plume–lithosphere interaction in the northeastern Siberian Craton.  相似文献   

18.
The U–Pb isotope data and corresponding ages of detrital zircons from rocks of the basal complexes of the Uralides of different segments of the Ural Fold Belt are considered. It was established that complexes of ancient domains of the East European Platform (Volga-Uralia, Sarmatia, Kola, etc.) seem to have been the main provenance areas of the clastic material for the Southern, Middle, and Northern Urals. This means that there were relatively remote and local (igneous formations of the pre-Uralides) provenance areas. Rift rock associations of the Uralides of the Subpolar and Polar Urals were formed mainly through erosion of local provenance areas (predominantly, Late Riphean–Vendian island-arc and orogenic magmatic complexes of the Proto-Uralides–Timanides). Detrital zircons of Riphean age dominate in rocks of the basal complexes of the Uralides. A source for them could have been rock complexes of Svecofennian-Norwegian Orogen and Cadomides of the Scythian-Turan Plate, intraplate magmatic formations, and metamorphic complexes, as well as blocks accreted to the margin of the East European Platform in the Late Precambrian–Cambrian and later detached and displaced during the Ordovician rifting and spreading. In general, the basal complexes of Uralides were formed owing to supply of clastic material from both remote and local sources. Despite the appearance of information of a totally new level (U–Pb isotope ages of detrital zircons, their Lu–Hf systematics, and the distribution features of rare earth and trace elements), the contribution of these sources to the formation of the Late Cambrian–Early Ordovician clastic strata is hardly possible at present to evaluate.  相似文献   

19.
Some geological, petrochemical, and geochemical characteristics of carbonaceous shales as a new unconventional natural source of gold and PGE are considered by the example of the Kimkan and Sutyr’ units of the Bureya massif (southern Far East, Russia). It is shown that shales of the units belong to the terrigenous-carbonaceous and siliceous-carbonaceous formations. They accumulated in deep-water trenches, and the active continental margin was probably their main provenance. The carbonaceous terrigenous-sedimentary units and precious-metalores in them show specific petrochemical characteristics different for complexes with predominantly PGE and gold mineralization. According to these characteristics, carbonaceous complexes with high Fe contents, low total contents of alkalies, and high K/Na ratios are promising for PGE-rich ores. Gold ores are usually localized in black-shale strata with high total contents of alkalies and low K/Na. In this respect, the shales and Fe-ores of the Kimkan unit obviously contain high-PGE mineralization, while the rocks of the Sutyr’ unit can bear gold deposits. We assume that the PGE mineralization is genetically related to the formation and transformation of carbonaceous rocks. At the same time, most of gold in the carbonaceous shales is native and is not related to carbon; it is present in mineral assemblages resulted from superimposed sulfidization and silicification.  相似文献   

20.
We present new data on the geologic structure and paleomagnetism of the Vendian and Lower Cambrian deposits of the Argun River region in East Transbaikalia. We discuss the issues related to the recognition of the Argun microcontinent within the composite blocks of the south-eastern part of the Central Asian belt, which are traditionally combined in the Amuria superterrane. Our paleomagnetic determinations help us justify the equatorial position of the sedimentary basin, in which the deposits of the Argun terrane Beletuy and Bystrin formations formed 560 and 525 Ma, close to or directly on the margin of the Siberian paleocontinent. This data is essential for the reconstruction of the geodynamic evolution of Siberia and Central Asia at the Precambrian-Paleozoic boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号