首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
39 galaxies are now known, from follow-up of faint IRAS sources and from submillimetre observations of high-redshift AGN, with far-infrared luminosities >1013 L. 13 of these, which have been found in 60- or 850-μm surveys, form an important unbiased subsample. 12 have been found by comparison of 60-μm surveys with quasar or radio galaxy catalogues, or from infrared surveys with colour selection biased towards AGN, while a further 14 have been found through submillimetre observations of known high-redshift AGN. In this paper I argue, on the basis of detailed modelling of the spectral energy distributions of hyperluminous galaxies with accurate radiative transfer models, and from evidence of high gas mass in several cases, that the bulk of the emission from these galaxies at rest frame wavelengths ≥50 μm is caused by star formation. Even after correction for the effects of lensing, hyperluminous galaxies with emission peaking at rest frame wavelengths ≥50 μm are therefore undergoing star formation at rates >103 M yr−1 and are strong candidates for being primeval galaxies, in the process of a major episode of star formation.  相似文献   

2.
We combine photometric observations of high-redshift     quasars, obtained at submillimetre to millimetre wavelengths, to obtain a mean far-infrared (rest-frame) spectral energy distribution (SED) of the thermal emission from dust, parametrized by a single temperature ( T ) and power-law emissivity index ( β ). The best-fitting values are     and     . Our method exploits the redshift spread of this set of quasars, which allows us to sample the SED at a larger number of rest wavelengths than is possible for a single object: the wavelength range extends down to ∼60 μm, and therefore samples the turnover in the greybody curve for these temperatures. This parametrization is of use to any studies that extrapolate from a flux at a single wavelength, for example to infer dust masses and far-infrared luminosities.
We interpret the cool, submillimetre component as arising from dust heated by star formation in the host galaxy of the quasar, although we do not exclude the presence of dust heated directly by the active galactic nucleus (AGN). Applying the mean SED to the data, we derive consistent star formation rates ∼1000 M yr−1 and dust masses ∼109 M, and investigate a simple scheme of AGN and host galaxy co-evolution to account for these quantities. The time-scale for formation of the host galaxy is     , and the luminous quasar phase occurs towards the end of this period, just before the reservoir of cold gas is depleted. Given the youth of the Universe at     (1.6 Gyr), the coexistence of a massive black hole and a luminous starburst at high redshifts is a powerful constraint on models of quasar host galaxy formation.  相似文献   

3.
We report the possible detection of V4334 Sgr (Sakurai's Object) at 450 and 850 μm with SCUBA on the James Clerk Maxwell Telescope. The submillimetre photometry, combined with a  1–5 μm  spectrum and  8–10 μm  photometry obtained nearly contemporaneously, suggests that the submillimetre emission originates in material ejected during the 1995 event. The dust mass is a  few×10-7 M  , the average mass-loss in the form of dust is  few×10-8 M yr-1  , and the integrated luminosity is  log( L /L)=3.66  for a distance of 2 kpc. The ejected shell had angular diameter ∼55 mas in 2001 August, and should by now be resolvable in the mid-infrared by  8–10 m  class telescopes.  相似文献   

4.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   

5.
We present millimetre photometry and submillimetre imaging of the central core and two hotspots in the radio lobes of the galaxy Cygnus A. For both hotspots and the central core, the synchrotron spectrum continues smoothly from the radio to a frequency of 677 GHz. The spectral index of the hotspots is constant over our frequency range, with a spectral index of α ≈ −1.0 ( S ν ∝ να), which is steeper than at lower frequencies and represents the emission from an aged population of electrons. The core is significantly flatter, with α = −0.6 ± 0.1, suggestive of an injected spectrum with no ageing, but some evidence for steepening exists at our highest observing frequency. Although IRAS data suggest the presence of dust in Cygnus A, our 450-μm data show no evidence of cold dust, therefore the dust component must have a temperature lying between 85 and 37 K, corresponding to dust masses of 1.4 × 106 and 1.0 × 108 M respectively.  相似文献   

6.
We present high angular resolution MERLIN observations of the 18-cm OH maser and continuum emission associated with the active core of the ultraluminous infrared galaxy Markarian 273. The continuum emission comes from three distinct regions in the central arcsecond of the galaxy. The brightest region of emission has a double-peaked structure which is spatially coincident with similar structures observed at 6 cm and 2.2 μm. The peak of the OH maser emission is spatially coincident with the peak in the continuum. For the first time the maser emission is spatially resolved, allowing us to measure the gas motion within the central 100 pc of the galaxy. Maser emission is found in both the 1665- and 1667-MHz lines, with no systematic offset found in the spatial locations of the two lines. The brighter component of the maser emission shows ordered motion and is aligned along the axis of the double-peaked structure in the brightest continuum region. The gas motion enables us to estimate the central mass density to be 850±50 M pc−3, which corresponds to a total mass of ≈1.5×108 M.  相似文献   

7.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

8.
We analyse Chandra High Resolution Camera observations of the starburst galaxy M82, concentrating on the most luminous X-ray source. We find a position for the source of         (J2000) with a 1 σ radial error of 0.7 arcsec. The accurate X-ray position shows that the luminous source is neither at the dynamical centre of M82 nor coincident with any suggested radio AGN candidate. The source is highly variable between observations, which suggests that it is a compact object and not a supernova or remnant. There is no significant short-term variability within the observations. Dynamical friction and the off-centre position place an upper bound of 105–106 M on the mass of the object, depending on its age. The X-ray luminosity suggests a compact object mass of at least 500 M. Thus the luminous source in M82 may represent a new class of compact object with a mass intermediate between those of stellar-mass black hole candidates and supermassive black holes.  相似文献   

9.
Submillimetre maps of NGC 891 have been obtained with the Programme National d'Observations Submillimétriques (PRONAOS) balloon-borne telescope and with the Infrared Space Observatory Photopolarimeter (ISOPHOT) on board the ISO satellite. In this article, we also gather data from the Infrared Astronomical Satellite ( IRAS ) and the Submillimetre Common-User Bolometer Array (SCUBA) to present the complete submillimetre spectrum of this nearby edge-on spiral galaxy. We derive submillimetre emission profiles along the major axis. The modified blackbody fits, assuming a single dust component, lead to temperatures of 19–24 K towards the centre and 18–20 K towards the edges, with possible variations in the dust spectral index from 1.4 to 2. The two-component fits lead to a warm-component temperature of 29 K all along the galaxy, with a cold component at 16 K. The interstellar medium (ISM) masses derived by these two methods are quite different:  4.6×109 M  in the case of the one-component model and  12 × 109 M  in the case of the two-component one. This two-component fit indicates that the cold dust to warm dust ratio is between 20 and 40, the highest values being in the wings of this galaxy. Compared to dust mass estimates, both estimates of the ISM mass are consistent with a gas to dust mass ratio of 240, which is close to the Milky Way value. Our results illustrate the importance of accurate submillimetre spectra in deriving masses of the ISM in galaxies.  相似文献   

10.
We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at   z = 2.85  in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof–Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof–Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO  ( L bol∼ 3.4 ± 0.2 × 1013 L)  and a 1.4 Gyr old simple stellar population with mass  ∼3.9 ± 0.3 × 1011 M  .  相似文献   

11.
The first spectroscopic census of active galactic nuclei (AGNs) associated with late-type galaxies in the Virgo cluster was carried out by observing 213 out of a complete set of 237 galaxies more massive than   M dyn > 108.5 M  . Among them, 77 are classified as AGNs [including 21 transition objects, 47 low-ionization nuclear emission regions (LINERs) and nine Seyferts] and comprise 32 per cent of the late-type galaxies in Virgo. Due to spectroscopic incompleteness, at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41 per cent. Using corollary near-infrared observations that enable us to estimate galaxy dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e.   M dyn≳ 1010 M  . Their frequency increases steeply with the dynamical mass from zero at   M dyn≈ 109.5 M  to virtually 1 at   M dyn > 1011.5 M  . These frequencies are consistent with those of low-luminosity AGNs found in the general field by the Sloan Digital Sky Survey. Massive galaxies that harbour AGNs commonly show conspicuous r -band star-like nuclear enhancements. Conversely, they often, but not necessarily, contain massive bulges. A few well-known AGNs (e.g. M61, M100, NGC 4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than  ∼106 M  are found active in our sample.  相似文献   

12.
We use an 850-μm SCUBA map of the Hubble Deep Field (HDF) to study the dust properties of optically-selected starburst galaxies at high redshift. The optical/infrared (IR) data in the HDF allow a photometric redshift to be estimated for each galaxy, together with an estimate of the visible star-formation rate. The 850-μm flux density of each source provides the complementary information: the amount of hidden, dust-enshrouded star formation activity. Although the 850-μm map does not allow detection of the majority of individual sources, we show that the galaxies with the highest UV star-formation rates are detected statistically, with a flux density of about S 850=0.2 mJy for an apparent UV star-formation rate of 1  h −2 M yr−1. This level of submillimetre output indicates that the total star-forming activity is on average a factor of approximately 6 times larger than the rate inferred from the UV output of these galaxies. The general population of optical starbursts is then predicted to contribute at least 25 per cent of the 850-μm background. We carry out a power-spectrum analysis of the map, which yields some evidence for angular clustering of the background source population, but at a level lower than that seen in Lyman-break galaxies. Together with other lines of argument, particularly from the NICMOS HDF data, this suggests that the 850-μm background originates over an extremely wide range of redshifts – perhaps 1≲ z ≲6.  相似文献   

13.
We explore the nature of X-ray sources with  70 μm  counterparts selected in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) fields: ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/  70 μm  sources in the redshift interval  0.5 < z < 1.3  are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are active galactic nuclei (AGN). Modelling of the optical to far-infrared (IR) spectral energy distribution indicates that most of them (27/28) have a strong starburst component  (>50 M yr−1)  that dominates in the IR. It is found that the X-ray and IR luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/  70 μm  sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/  70 μm  sources have lower specific star formation rates compared to the general  70 μm  population, consistent with AGN feedback moderating the star formation in the host galaxies.  相似文献   

14.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

15.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

16.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

17.
An analysis is presented of the power spectrum of X-ray variability of the bright Seyfert 1 galaxy Mrk 766 as observed by XMM–Newton . Over the 0.2–10 keV energy range the power spectral density (PSD) is well-represented by a power-law with a slope of  αlow≈ 1  at low frequencies, breaking to a slope of  αhi= 2.8+0.2−0.4  at a frequency   f br≈ 5 × 10−4 Hz  . As has been noted before, this broken power-law PSD shape is similar to that observed in the Galactic black hole candidate Cygnus X-1. If it is assumed that Mrk 766 shows a power spectrum similar in form to that of Cyg X-1, and that the break time-scale scales linearly with black hole mass, then the mass of the black hole in Mrk 766 is inferred to be  ≲ 5 × 105 M  . This rather low mass would mean Mrk 766 radiates above the Eddington limit. The coherence between different energy bands is significantly below unity implying that variations in the different energy bands are rather poorly correlated. The low coherence can be explained in the framework of standard Comptonization models if the properties of the Comptonizing medium are rapidly variable or if there are several distinct emission sites.  相似文献   

18.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

19.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

20.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号