首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the ability of the GRACE gravimetry mission and Jason-1 altimetry to resolve ice and glacier induced contributions to sea level rise, by means of a fingerprint method. Here, the signals from ice sheet and land glacier changes, steric changes, glacial isostatic adjustment and terrestrial hydrology are assumed to have fixed spatial patterns. In a joint inversion using GRACE and Jason-1 data the unknown temporal components can then be estimated by least-squares. In total, we estimate temporal components for up to ∼ 80 individual patterns. From a propagation of the full error-covariance from GRACE and a diagonal error-covariance from Jason-1 altimetry we find that: (1) GRACE almost entirely explains the mass related parameters in the joint inversion, (2) an inversion using only Jason-1 data has a marginal ability to estimate the mass related parameters, while the steric parameters have much better formal accuracy. In terms of mean sea level rise the steric patterns have a maximum formal accuracy of 0.01 mm for an 11 week running mean. In general, strong negative error correlations (ρ <  0.9) exists between the high and low elevation parts of the ice sheet drainage basins, when those are estimated independently. The largest formal errors found are in the order of 40 Gton for small high elevation subbasins in the southern Greenland ice sheet, which are difficult to separate. In a simplified joint inversion, merging high and low elevation basins, we have investigated the ability of the GRACE and Jason-1 data to separate the geocenter motion into a present-day contribution and a contribution from glacial isostatic adjustment (GIA). We find that the GIA related signal is larger than the present-day component with a maximum of −0.71 mm/year in the Z direction. Total geocenter motion rates are found to be −0.28, 0.43, −1.08 mm/year for the X, Y and Z components, respectively. The inversion results have been propagated to the Jason-1 along-track measurements. Over the time period considered, we see that a large part of the variability in the Pacific, Atlantic and Indian ocean can be explained by our inversion results. The applied inversion method therefore seems a feasible way to separate steric from mass induced sea level changes. At the same time, the joint inversion would benefit from more advanced parameterizations, which may aid in fitting remaining signal from altimetry.  相似文献   

2.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

3.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

4.
《Journal of Geodynamics》2009,47(3-5):182-193
A new method to estimate the vertical crustal motion from satellite altimetry over land was developed. The method was tested around Hudson Bay, where the observed vertical motion is largely caused by the incomplete glacial isostatic adjustment (GIA) as a result of the Laurentide ice sheet deglaciation since the last glacial maximum (LGM). Decadal (1992–2003) TOPEX/POSEIDON radar altimetry data over land surfaces were used. The results presented here are improved compared to a previous study (Lee, H., Shum, C.K., Kuo, C.Y., Yi, Y., Braun, A., 2008. Application of TOPEX altimetry for solid Earth deformation studies. Terr. Atmos. Ocean. Sci. 19, 37–46. doi:10.3319/TAO.2008.19.1-2.37(SA).) which estimated vertical motion only over relatively flat land surfaces (standard deviation of the height variation <40 cm). In this study, we extended the concept of traditional 1-Hz (one-per-frame) radar altimeter ocean stackfiles to build 10-Hz (10-per-frame) land stackfiles over Hudson Bay land regions, and succeeded in obtaining vertical motion estimates over much rougher surfaces (standard deviation of the height variation <2 m). 90-m C-band Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) is used as a reference surface to select an optimal waveform retracker, to correct surface gradient errors, and to calculate land surface anomalies. Here, we developed an alternative retracker, called the modified threshold retracker, resulting in decadal vertical motion time series over a 1500 km by 1000 km region covering northern Ontario, northeastern Manitoba, and the Great Lakes region which is at the margin of the former Laurentide ice sheet. The average of the estimated uncertainties for the vertical motion is 2.9 mm/year which is comparable to 2.1 mm/year of recent GPS solutions. The estimated vertical motion is compared with other geodetic observations from GPS, tide gauge/altimetry, GRACE, and several GIA models. The data agree best with the laterally varying 3D GIA model, RF3S20 (β = 0.4) whereas the combination of land altimetry solution with other measurements match best with the models RF3S20 (β = 0.0) or RF3S20 (β = 0.2) in terms of mean and standard deviation of the differences. It is anticipated that this innovative technique could potentially be used to provide additional constraints for GIA model improvement, and be applied to other geodynamics studies.  相似文献   

5.
《Journal of Geodynamics》2010,49(3-5):253-259
We observe the Earth tidal fields at diurnal and semi-diurnal periods using Kinematic Precise Point Positioning (KPPP) GPS analysis. Our KPPP GPS solutions compare well with super-conducting gravimeter (SG) observations and a theoretical Earth tidal model, that includes both ocean tide loading model and body tides. We make a high resolution map of the observed Earth tidal response fields using the Japanese GEONET GPS network which consists of 1200 sites. We find that: (1) the average phase of GPS data lags 0.11 ± 0.04° from our theoretical Earth tidal model, (2) the average amplitude ratio between GPS and the theoretical Earth tidal model is 1.007 ± 0.003, (3) the amplitude in the Kyushu district is about 1.0–1.5 ± 0.3% larger than in the Hokkaido district, and (4) the amplitude at the Japan Sea side is about 0.5 ± 0.2% larger than that at the Pacific Ocean side. These results suggest that we may be able to place constraints on Earth structure using GPS-derived tidal information.  相似文献   

6.
The aim of this study is to assess the availability and quality of data from the International GNSS Service (IGS) Global Positioning System (GPS) network in Africa, especially for retrieving zenith tropospheric delay (ZTD), from which precipitable water vapour (PWV) can be derived, in view of application to the African Monsoon Multidisciplinary Analysis (AMMA) project. Three major error sources for the GPS data analysis evaluating PWV in Africa are the accuracy of the satellite orbits, the correction for the radio delay induced by the ionosphere and the vertical site displacements due to ocean loading. The first part of this study examines these error sources and the validity of GPS data for meteorological applications in Africa in dedicated analyses spanning the year 2001. These analyses were performed using the IGS precise orbits. Weak degradation of baseline precision with increasing baseline lengths suggests that the average orbital error is not limiting the GPS analysis in Africa. The impact of the ionosphere has been evaluated during a maximum of solar activity in 2001. The loss of L2 data has actually been observed. It amounts to 2% on average for 2001, with maxima of 8% during magnetic storm events. A slight decrease in formal accuracy of ZTD seems to be related to the loss of L2 data at the end of the day. This indicates that scintillation effects are present in the GPS observations but however are not a major limitation. The impact of ocean loading is found to be significant on ZTD estimates (up to ±2 mm in equivalent PWV). The use of a proper ocean loading model eliminates this effect.The second aspect of this study concerns the IGS analysis quality for the African stations. The accuracy has been assessed through position dispersion between individual solutions and the most recent version of the IGS combined solution IGb00, and residuals from the transformation of the IGS combined solution into the International Terrestrial Reference Frame 2005. The positioning performance of the IGS analysis is consistent with an accuracy in ZTD of ±6 mm (±1 mm in PWV), as requested for meteorological applications such as planned in AMMA.  相似文献   

7.
《Journal of Geodynamics》2008,46(4-5):163-168
The reactivation of the Chelungpu fault triggered the 20 September 1999 Chi-Chi Taiwan earthquake (Mw = 7.6) which caused a 100-km long surface rupture that trends north–south. We reconstruct the fault geometry using 1068 planar triangular dislocation elements that approximate more realistically the curved three-dimensional fault surface. The fault slip distribution is then determined with the observed GPS coseismic displacements as well as interferometric synthetic aperture radar (InSAR) data. The results show that our smooth 3D fault slip model has improved the fit to the geodetic data by 44% compared with the previously published inversions. The slip distribution obtained both by inversion of GPS data only and by joint inversion of GPS and InSAR data indicates that notable slips occur on the sub-horizontal décollement at the depth of 6.1–8.9 km.  相似文献   

8.
We used GPS velocities from approximately 700 stations in western China to study the crustal deformation before the Wenchuan MS8.0 earthquake. The processing methods included analyses of the strain rate field, inversion of fault locking and the GPS velocity profiles. The GPS strain rate in the E-W direction in the Qinghai-Tibet block shows that extensional deformation was dominant in the western region of the block (west of 92.5° E), while compressive deformation predominated in the eastern region of the block (from 92.5° E to 100° E). On a regional scale, the hypocentral region of the Wenchuan earthquake was located at the edge of an intense compression deformation zone of about 1.9 × 10−8/a in an east-west direction. The characteristic deformation in the seismogenic fault was compressive with a dextral component. The compression deformation rate was greater in the fault's western region than in its eastern region, and the strain accumulation was very slow on the fault scale. The results of a fault locking inversion show that the locking fraction and slip deficit was greater in the middle-northern section of the seismogenic fault than in the southern section. The GPS velocity profile before the Wenchuan earthquake shows that the compression deformation was smaller than the dextral deformation, which is asymmetrical with respect to the distribution of co-seismic displacement. These deformation characteristics should provide some clues to the Wenchuan earthquake which occurred in the later period of the earthquake cycle.  相似文献   

9.
《Journal of Geodynamics》2010,49(3-5):331-339
The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal amplitudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN resonance parameters are combined in a resonance equation involving the Earth's interior parameters. The sensitivity of the FCN parameters to the diurnal tidal waves demonstrates that the quality factor of the FCN is strongly dependent on the accuracy of the imaginary part estimates of the gravimetric factors close to the resonance. The weak amplitude of Ψ1 tidal wave on the Earth, which is the closest in frequency to the FCN, in addition to errors in ocean loading correction, explains the poor determination of the quality factor Q from surface gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period, Q and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the results using the least-squares method optimized using the Levenberg–Marquardt algorithm are in agreement with the Bayesian probabilistic results and agree with the results obtained from VLBI nutation data. Finally, a combined inversion of 7 GGP European SG data is performed giving T = 428 ± 3 days and 7762 < Q < 31,989 (90% C.I.). An experimental estimate of the internal pressure Love number is also proposed.  相似文献   

10.
《Journal of Geodynamics》2006,41(4-5):494-501
We have processed all available DORIS data from all available satellites, except Jason-1 over the past 10 years (from January 1993 to April 2003). Weekly solutions have been produced for stations positions coordinates, geocenter motion and scale factor stability. We present here accuracy presently achievable for all types of potential geodetic products. Typically weekly stations positions can be derived with a repeatability of 1.0–1.5 cm using data from 5 satellites simultaneously, showing the significant improvement in precision that has been gained recently using the additional new DORIS satellites. As an example, we show how such new results can detect displacement from large magnitude earthquakes, such as the 2003 Denali fault earthquake in Alaska. Displacements of −5 cm in latitude and +2 cm in longitude were easily detected using the DORIS data and are confirmed by recent GPS determination. The terrestrial reference frame was also well be monitored with DORIS during this 10-year period. Other geodetic products, such as tropospheric corrections for atmospheric studies are also analyzed. Finally, we discuss here the possible advantages and weaknesses of the DORIS system as additional geodetic tool, in conjunction with the already existing GPS, VLBI and SLR services, to participate in an Global Geodetic Observing System (GGOS).  相似文献   

11.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

12.
In this study, we present new GPS observations in Azerbaijan to provide an improved basis for determining the distribution of crustal deformation throughout the country and surrounding areas. The deformation field in the region has been analyzed with a dense GPS network configuration and a reliable quantification of the ongoing deformation was achieved. Results show that while contraction is dominant over the whole region, it is mostly concentrated on the middle and eastern parts of Caucasus Thrust Fault reaching up to 6.4 ± 0.2 mm/yr and Lesser Caucasus Fault does no accommodate more than 1–2 mm/yr of contraction. New network also clearly substantiates that the West Caspian Fault, which is a continuation of Caucasus Thrust Fault in the south, accommodates right-lateral slip rates of 7.1 ± 0.3 mm/yr in addition to 5.5 ± 0.3 mm/yr contraction rates.  相似文献   

13.
Relative sea level variations in the north-western part of the Arabian Gulf have been estimated in the past using no more than 10 to 15 years of observations. In this study, we have almost doubled the period to 28.7 years by examining all available tide gauge data in the area and constructing a mean gauge time-series from seven coastal tide gauges. We found for the period 1979–2007 a relative sea level rise of 2.2 ± 0.5 mm/year. Using the subsidence observed at 6 GPS stations within a radius of 100 km of the tide gauges as an indication of the vertical land motion, the corresponding absolute sea level rise is 1.5 ± 0.8 mm/year that is in agreement with the global estimate of 1.9 ± 0.1 mm/year (Church and White, 2011) for the same studied period. By taking into account the temporal correlations we conclude that previous published results underestimate the true sea level rate uncertainty in this area by a factor of 5–10.  相似文献   

14.
《Journal of Geodynamics》2009,47(3-5):118-130
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

15.
We present results of a geomorphological and morphotectonic analysis of the northeastern part of the Rif. We show that the present day kinematics of the Rif is characterized by active deformation along the Trougout and Nekor faults in the North-East. Digital Elevation Models of offset drainage features (streams, fluvial terraces) allow determining a normal-left-lateral motion along the Trougout fault and a left-lateral strike-slip motion along the Nekor fault. Preliminary 3He cosmogenic dates of tectonic markers yield vertical and horizontal slip rates of ∼0.9 mm/yr and ∼0.5 mm/yr, respectively along the Trougout fault. The present-day localized transtension seen in the north-eastern Rif morphology (Ras Tarf) is coeval with uplifted marine terraces near the Al Hoceima Bay. U/Th dating of shells yield an average uplift rate of ∼0.2 mm/yr during the past 500 ka. These data show that active transtension in the northeastern Rif is also associated with uplift. These new morphotectonic constraints are consistent with the GPS measurements showing southwestward overall motion of most of the Rif belt with respect to stable Africa.  相似文献   

16.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

17.
We present GPS observations in Morocco and adjacent areas of Spain from 15 continuous (CGPS) and 31 survey-mode (SGPS) sites extending from the stable part of the Nubian plate to central Spain. We determine a robust velocity field for the W Mediterranean that we use to constrain models for the Iberia-Nubia plate boundary. South of the High Atlas Mountain system, GPS motions are consistent with Nubia plate motions from prior geodetic studies. We constrain shortening in the Atlas system to <1.5 mm/yr, 95% confidence level. North of the Atlas Mountains, the GPS velocities indicate Nubia motion with respect to Eurasia, but also a component of motion normal to the direction of Nubia-Eurasia motion, consisting of southward translation of the Rif Mountains in N Morocco at rates exceeding 5 mm/yr. This southward motion appears to be directly related to Miocene opening of the Alboran Sea. The Betic Mountain system north of the Alboran Sea is characterized by WNW motion with respect to Eurasia at ~1–2 mm/yr, paralleling Nubia-Eurasia relative motion. In addition, sites located in the Betics north of the southerly moving Rif Mountains also indicate a component of southerly motion with respect to Eurasia. We interpret this as indicating that deformation associated with Nubia-Eurasia plate motion extends into the southern Betics, but also that the Betic system may be affected by the same processes that are causing southward motion of the Rif Mountains south of the Alboran Sea. Kinematic modeling indicates that plate boundary geometries that include a boundary through the Straits of Gibraltar are most compatible with the component of motion in the direction of relative plate motion, but that two additional blocks (Alboran-Rif block, Betic Mountain block), independent of both Nubia and Eurasia are needed to account for the motions of the Rif and Betic Mountains normal to the direction of relative plate motion. We speculate that the southward motions of the Alboran-Rif and Betic blocks may be related to mantle flow, possibly induced by southward rollback of the subducted Nubian plate beneath the Alboran Sea and Rif Mountains.  相似文献   

18.
Space-based tectonic studies on the western part of the North Anatolian Fault Zone (NAFZ) have been conducted over two decades. After the August 17, 1999, Izmit earthquake (Mw = 7.4), this region attracted greater scientific interest, and the collected data became more valuable. The Geodesy Department of the Kandilli Observatory and Earthquake Research Institute (KOERI) at Bogazici University established three micro-geodetic networks to the east of Akyazi, east of Iznik, and west of Lake Sapanca in the eastern part of the Marmara region; GPS data have been continually collected at these locations since 1994. The NAFZ branches out in the western part of the Marmara region and extends up to the Aegean Sea. Segments of the fault passing through the Marmara Sea are considered active, and this has increased concern regarding imminent earthquakes. Conventional geodetic measurements made between 1990 and 1994 are not sufficient for monitoring small movements. However, GPS has played a very important role in detecting such deformations in the area after 1994. The Iznik network, with 10 points, is bilaterally located on the Iznik-Mekece fault. Six years of GPS data for 2004–2010 collected for the monitoring of crustal deformation showed that the Iznik-Mekece fault segment moves westward at about 22 ± 1 mm/yr with respect to the Eurasia fixed reference frame. The GPS observations show that there is no strain accumulation in the area.  相似文献   

19.
《Continental Shelf Research》2006,26(12-13):1496-1518
A nested-grid hydrodynamic modelling system is used to study circulation and temperature distributions in Lake Huron (LH) and adjacent areas. This nested system is based on the three-dimensional, primitive-equation z-level ocean model. The nested system consists of two sub-components: a coarse-resolution outer model covering LH and Georgian Bay (GB) with a horizontal resolution of roughly 2.5 km, and the fine-resolution inner model covering eastern LH and northwestern GB with a horizontal resolution of roughly 900 m. Both the outer and inner models have 30 z-levels in the vertical. To assess the model performance, we simulate the three-dimensional circulation and temperature distributions of LH and GB in 1974–1975 and compare the model results with observations made in the lake. We demonstrate that outer model of the nested system simulates reasonably well the large-scale circulation and seasonal evolution of thermal stratifications in LH and GB, and the inner model produces reasonably well the three-dimensional flow and thermal structure over the coastal boundary layer close to the eastern shore of the lake.  相似文献   

20.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号