首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V “Akademik Nikolay Strakhov” in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.  相似文献   

2.
New 40Ar–39Ar ages of 5.6 to 1.3 Ma for lavas from the fossil Phoenix Ridge in the Drake Passage show that magmatism continued for at least 2 Ma after the cessation of spreading at 3.3 ± 0.2 Ma. The Phoenix Ridge lavas are incompatible element-enriched relative to average MORB and show an increasing enrichment with decreasing age, corresponding to progressively decreasing degrees of partial melting of spinel peridotite after spreading stopped. The low-degree partial melts increasingly tap a mantle source with radiogenic Sr and Pb but unradiogenic Nd isotope ratios implying an ancient enrichment. The post-spreading magmas apparently form by buoyant ascent of enriched and easily fusible portions of the upper mantle. Only segments of fossil spreading ridges underlain by such enriched and fertile mantle show post-spreading volcanism frequently forming bathymetric highs. The Phoenix Ridge lavas belong to the Pacific, rather than the Atlantic, mantle domain in regional Sr–Nd–Pb space. Our new data show that the southern Pacific Ocean mantle is heterogeneous containing significant enriched portions that are preferentially tapped at low melt fractions. Isotopic mapping reveals that Pacific-type upper mantle flows eastward through Drake Passage and surrounds the subducting Phoenix Plate beneath the Bransfield Basin.  相似文献   

3.
The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.  相似文献   

4.
Petrological and geochemical data obtained on Neogene magmatism restricted to a deep fault in Andree Land at Spitsbergen Island, which was related to the overall restyling of the Arctic territory at 25–20 Ma, indicate that the derivation of the Neogene magmas was significantly affected by the continental pyroxenite mantle. The Neogene basalts are noted for a radiogenic isotopic composition of Pb (207Pb/204Pb= 15.5–15.55, 206Pb/204Pb = 18.4–18.6, 208Pb/204 Pb = 38.4–38.6) and Sr(87Sr/86Sr = 0.7038–0.7048) at low 143Nd/144Nd = 0.5129. Melts of this type are the extremely enriched end member of the isotopic mixing of a depleted and enriched sources and determine a geochemical trend that passes through the compositions of alkaline magmas from Quaternary volcanoes at Spitsbergen and weakly enriched tholeiites of the Knipovich Ridge, which started to develop simultaneously with the onset of Neogene magmatism in the western part of Spitsbergen. The composition of the liquidus olivine (which is rich in NiO) indicates that melting occurred in the olivine-free mantle. Our data thus testify that a significant role in the genesis of the Neogene magmas was played by continental pyroxenite mantle.  相似文献   

5.
P.R. Castillo  S.J. Rigby  R.U. Solidum   《Lithos》2007,97(3-4):271-288
Lavas from the Sulu Arc, southern Philippines, exhibit an enrichment in high field strength elements (HFSE) that represents a departure from the typical volcanic arc geochemical signature. It has been postulated that this relative enrichment arises from metasomatism of mantle wedge peridotites by melts derived from the subducting oceanic lithosphere, through formation of amphibole which subsequently breaks down and enriches the mantle source of parental arc magmas in HFSE. Divergent chemical and isotopic characteristics between Sulu Arc HFSE-enriched lavas and the Sulu Sea crust being subducted—the presumed source of slab-derived melts—render it unlikely, however, that HFSE enrichment arises from the influence of such melts. New geochemical data suggest that the varying degrees of HFSE enrichment in Sulu Arc lavas are instead the result of variable amounts of mixing between enriched and depleted mantle end-components—the sources of South China Sea intraplate lavas and Sulu seafloor basalts, respectively—within a compositionally heterogeneous mantle wedge.  相似文献   

6.
The recent tectonics of the Arctic Basin and northeastern Asia are considered as a result of interaction between three lithospheric plates: North-America, Eurasia and Spitsbergen. Seismic zones (coinciding in the Norway-Greenland basin with the Kolbeinsey, Mohns and Knipovich ridges, and in the Arctic Ocean with the Gakkel Ridge) clearly mark the boundaries between them. In southernmost Svalbard (Spitsbergen), the secondary seismic belt deviates from the major seismic zone. This belt continues into the seismic zone of the Franz Josef Land and then merges into the seismic zone of the Gakkel Ridge at 70°–90°E. The smaller Spitsbergen plate is located between the major seismic zone and its secondary branch.Within northeastern Asia, earthquake epicenters with magnitude over 4.5 are concentrated within a 300-km wide belt crossing the Eurasian continent over a distance of 3000 km from the Lena estuary to the Komandorskye Islands. A single seismic belt crosses the northern sections of the Verkhoyansky Ridge and runs along the Chersky Ridge to the Kolymo-Okhotsk Divide.To compute the poles of relative rotation of the Eurasian, North-American and Spitsbergen plates we use 23 new determinations of focal-mechanism solutions for earthquakes, and 38 azimuths of slip vectors obtained by matching of symmetric mountain pairs on both sides of the Knipovich and Gakkel ridges; we also use 14 azimuths of strike-slip faults within the Chersky Ridge determined by satellite images. The following parameters of plate displacement were obtained: Eurasia/North America: 62.2°N, 140.2°E (from the Knipovich Ridge section south of the triple junction); 61.9°N, 143.1°E (from fault strikes in the Chersky Ridge); 60.42°N, 141.56°C (from the Knipovich section and from fault strikes in the Chersky Ridge); 59.48°N, 140.83°E, α = 1.89 · 10−7 deg/year (from the Knipovich section, from fault strikes in the Chersky Ridge and from the Gakkel Ridge section east of the triple junction). The rate was calculated by fitting the 2′ magnetic lineations within the Gakkel Ridge).North-America/Spitsbergen: 70.96°N, 121.18°E, α = −2.7 · 10−7 deg/year from the Knipovich Ridge section north of the triple junction, from earthquakes in the Spitsbergen fracture zone and from the Gakkel Ridge section west of the triple junction). Eurasia/Spitsbergen: 70.7°N, 25.49°E, α = −0.99 · 10−7 deg/year (from closure of vector triangles).  相似文献   

7.
Major element compositions of submarine basalts, quenched glasses, and contained phenocrysts are reported for samples from 25 dredge stations along the Mohns-Knipovich Ridge between the Jan Mayen fracture zone and 77°30N. Most of the basalts collected on the Jan Mayen platform have a subaerial appearance, are nepheline normative, rich in incompatible elements, and have REE-patterns strongly enriched in light-REE. The other basalts (with one exception) are tholeiitic pillow basalts, many of which have fresh quenched glass rims. From the Jan Mayen platform northeastwards the phenocryst assemblage changes from olivine±plagioclase±clinopyroxene±magnetite to olivine +plagioclase±chrome-spinel. This change is accompanied by a progressive decrease in the content of incompatible elements, light-REE enrichments and elevation of the ridge that are similar to those observed south of the Azores and Iceland hotspots. Pillow basalts and glasses collected along the esternmost part of the Mohns Ridge (450 to 675 km east of Jan Mayen) have low K2O, TiO2, and P2O5 contents, light-REE depleted patterns relative to chondrites, and Mg/(Mg+Fe2+) ratios between 0.64 and 0.60. Pillow basalts and glasses from the Knipovich Ridge have similar (Mg/Mg+Fe2+) ratios, but along the entire ridge have slightly higher concentrations of incompatible elements and chondritic to slightly light-REE enriched patterns. The incompatible element enrichment increases slightly northward. Plagioclase phenocrysts show normal and reverse zoning on all parts of the ridge whereas olivines are unzoned or show only weak normal zoning. Olivine-liquid equilibrium temperatures are calculated to be in the range of 1,060–1,206° C with a mean around 1,180° C.Rocks and glasses collected on the Jan Mayen Platform are compositionally similar to Jan Mayen volcanic products, suggesting that off-ridge alkali volcanism on the Jan Mayen Platform is more widespread than so far suspected. There is also evidence to suggest that the alkali basalts from the Jan Mayen Platform are derived from deeper levels and by smaller degrees of partial melting of a mantle significantly more enriched in light-REE and other incompatible elements than are the tholeiitic basalts from the Eastern Mohns and Knipovich Ridge. The possibility of the presence of another hitherto unsuspected enriched mantle region north of 77° 30 N is also briefly considered.It remains uncertain whether geochemical gradients revealed in this study reflect: (1) the dynamics of mixing during mantle advection and magma emplacement into the crust along the Mid-Atlantic Ridge (MAR) spreading axis, (e.g. such as in the mantle plume — large-ion-lithophile element depleted asthenosphere mixing model previously proposed); or (2) a horizontal gradation of the mantle beneath the MAR axis similar to that observed in the overlying crust; or (3) a vertical gradation of the mantle in incompatible elements with their contents increasing with depth and derivations of melts from progressively greater depth towards the Jan Mayen Platform.  相似文献   

8.
We report elemental and Nd–Sr isotopic data for three types of Ordovician volcanic and gabbroic rocks from the Sharburti Mountains in the West Junggar (Xinjiang), Northwest China. Gabbros and Type I lavas occur in the Early Ordovician Hongguleleng ophiolite whereas Type II and III lavas are parts of the Middle Ordovician Bulukeqi Group. Gabbros and Type I lavas are tholeiites with a depleted light rare earth element (LREE) and mid-oceanic ridge basalt (MORB)-like signature with a crystallization sequence of plagioclase–clinopyroxene, suggesting formation at a mid-oceanic ridge. Type II lavas are Nb-enriched basalts (NEBs, Nb = 14–15 ppm), which have E-MORB-like REE patterns and Nb/Yb and Th/Yb ratios. They come from mantle metasomatized by slab melts. Type III lavas are further divided into two sub-types: (1) Type IIIa is tholeiitic to calc-alkaline basalts and andesites, with REE patterns that are flat or slightly LREE enriched, and with a negative Nb anomaly and Th/Yb enrichment, indicating that they were generated above a subduction zone; (2) Type IIIb is calc-alkaline basalts and andesites, which are strongly enriched in LREE with a marked negative Nb anomaly and Th/Yb enrichment, suggesting generation in a normal island-arc setting. The initial 87Sr/86Sr ratios of Type III lavas range from 0.70443 to 0.70532 and ?Ndt ranges from +1.5 to +4.5, suggesting that these melts were derived from mantle wedge significantly modified by subducted material (enriched mantle I (EMI)) above a subduction zone. Contemporary tholeiitic to calc-alkaline basalt–andesite and NEB association suggest that the NEBs erupted during development of the tholeiitic to calc-alkaline arc. We propose a model of intra-oceanic subduction influenced by ridge subduction for the Ordovician tectono-magmatic evolution of the northern West Junggar.  相似文献   

9.
The paper presents newly obtained data on the geological structure, age, and composition of the Gremyakha-Vyrmes Massif, which consists of rocks of the ultrabasic, granitoid, and foidolite series. According to the results of the Rb-Sr and Sm-Nd geochronologic research and the U-Pb dating of single zircon grains, the three rock series composing the massif were emplaced within a fairly narrow age interval of 1885 ± 20 Ma, a fact testifying to the spatiotemporal closeness of the normal ultrabasic and alkaline melts. The interaction of these magmas within the crust resulted in the complicated series of derivatives of the Gremyakha-Vyrmes Massif, whose rocks show evidence of the mixing of compositionally diverse mantle melts. Model simulations based on precise geochemical data indicate that the probable parental magmas of the ultrabasic series of this massif were ferropicritic melts, which were formed by endogenic activity in the Pechenga-Varzuga rift zone. According to the simulation data, the granitoids of the massif were produced by the fractional crystallization of melts genetically related to the gabbro-peridotites and by the accompanying assimilation of Archean crustal material with the addition of small portions of alkaline-ultrabasic melts. The isotopic geochemical characteristics of the foidolites notably differ from those of the other rocks of the massif: together with carbonatites, these rocks define a trend implying the predominance of a more depleted mantle source in their genesis. The similarities between the Sm-Nd isotopic characteristics of foidolites from the Gremyakha-Vyrmes Massif and the rocks of the Tiksheozero Massif suggest that the parental alkaline-ultrabasic melts of these rocks were derived from an autonomous mantle source and were only very weakly affected by the crust. The occurrence of ultrabasic foidolites and carbonatites in the Gremyakha-Vyrmes Massif indicates that domains of metasomatized mantle material were produced in the sublithospheric mantle beneath the northeastern part of the Fennoscandian Shield already at 1.88 Ga, and these domains were enriched in incompatible elements and able to produce alkaline and carbonatite melts. The involvement of these domains in plume-lithospheric processes at 0.4–0.36 Ga gave rise to the peralkaline melts that formed the Paleozoic Kola alkaline province.  相似文献   

10.
The Gough Island lavas range from picrite basalt through tosodalite-bearing aegirine-augite trachyte. The basaltic lavasare predominantly nepheline normative alkali basalts, althougha group of hypersthene normative tholeiitic basalts does occur.The oldest lavas on the island, represented by the Lower Basaltseries, are approximately 1?0 m.y. old and the youngest arethe Upper Basalts with an age of {small tilde} 0?13 m.y. Relatively coherent variations are described by the basalticand trachytic lavas with respect to both bulk rock major andtrace element geochemistry and mineral chemistry, and quantitativepetrogenetic modelling suggests that most of the variation canbe attributed to crystal fractionation/accumulation processesacting on a number of geochemically distinct parental magmas.The Upper Basalts and Lower Basalts have (within the limitsof sampling) a relatively restricted composition compared tothe Middle Basalt series lavas, with the latter ranging frompicrite basalt through to trachyandesite. The picrite basaltsand coarsely pyroxene-olivine phyric basalts represent partialcumulates with varying proportions (up to 40 wt. per cent) ofaccumulated olivine and clinopyroxene. In contrast, the moderatelyphyric and aphyric/finely porphyritic lavas represent the productsof crystal fractionation with the most evolved lavas havingexperienced at least 40 per cent fractional crystallizationof clinopyroxene, olivine, plagioclase and minor Fe-Ti oxidesand apatite. The detailed abundance variations in these lavasindicate that a number of parental magma compositions have fractionatedto produce the overall variations in basalt geochemistry, andsome of the magmas have interacted through mixing processes. The trachytic lavas show a large range in trace element abundance,but have only a limited major element variation. Most of thisvariation can be attributed to extensive (up to 70 per cent)fractional crystallization of predominantly alkali feldsparwith minor clinopyroxene, olivine, biotite, titano-magnetiteand apatite. A number of genetically distinct trachytes canbe recognized which are probably not related to each other byany simple fractional crystallization process. The compositionof the least evolved trachytes can be adequately accounted forby relatively extensive (up to 60 per cent) fractionation ofthe more evolved Middle Basalt series lavas. The trace element and isotopic characteristics of primitiveGough Island basalts support the concept that the source region(s)giving rise to these lavas is extremely enriched in highly incompatibleelements relative to primordial or ‘undepleted’mantle of bulk earth composition. It is unlikely that the lavashave sampled undepleted mantle as might be suggested by thesimilarity of the Sr and Nd isotopic ratios to ‘bulk earth’values. Rather, a model is favoured whereby the lavas are derivedfrom previously enriched sub-oceanic mantle which was subsequentlyinvaded and further enriched, at some time prior to partialmelting, by melts or fluids highly enriched in incompatibleelements. The enrichment could have occurred as veining by smalldegree partial melts or by infiltration of metasomatic fluids.  相似文献   

11.
《International Geology Review》2012,54(12):1456-1474
We present new major element, trace element, and Sr–Nd–Pb isotope data for 18 basaltic lavas and six glasses collected in situ from the Eastern Lau Spreading Centre (ELSC) and the Valu Fa Ridge (VFR). All lava samples are aphanitic and contain rare plagioclase and clinopyroxene microlites and microphenocrysts. The rocks are sub-alkaline and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element compositions, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt. Samples from the VFR have higher large ion lithophile element/high field strength element ratios (e.g. Ba/Nb) than the ELSC samples. VFR and ELSC Sr–Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr for a given 143Nd/144Nd ratio than ELSC analogues. The Pb isotopic composition of ELSC lavas is more Indian MORB-like, whereas that of VFR lavas is more Pacific MORB-like. Our new data, combined with literature data for the Central Lau Spreading Centre, indicate that the mantle beneath the ELSC and VFR spreading centres was originally of Pacific type in composition, but was displaced by Indian-type mantle as rifting propagated to the south. The mantle beneath the spreading centres also was variably affected by subduction-induced metasomatism, mainly by fluids released from the altered, subducting oceanic crust; the influence of these components is best seen in VFR lavas. To a first approximation, the effects of underflow on the composition and degree of partial melting of the mantle source of Lau spreading centre lavas inversely correlate with distance of the spreading centres from the Tonga arc. Superimposed on this general process, however, are the effects of the local geographic contrasts in the composition of subduction components. The latter have been transferred mainly by dehydration-generated fluids into the mantle beneath the Tonga supra-subduction zone.  相似文献   

12.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   

13.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

14.
Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy   总被引:11,自引:0,他引:11  
L. Beccaluva  P. Di Girolamo  G. Serri 《Lithos》1991,26(3-4):191-221
The volcanism in the Roman Province of Italy can be modelled by the partial melting of heterogeneously enriched mantle sources. The heterogeneity was created by materials derived from a subducted slab which can still be traced geophysically beneath the central Apennines.

New petrographical and chemical data are presented for the high-K calc-alkaline and the shoshonitic volcanics of the Campania region. Primary magmas are present only locally. The existence of spatial zonation in the volcanism of Campania is documented for the first time. The shoshonitic, leucite-basanitic and leucititic volcanics of the Phlegraean Fields-Procida-Ischia and the Somma-Vesuvius areas are, at similar degrees of evolution, about two times richer in Nb and Ba than those of northwestern Campania and the Latium part of the Roman Province. Accordingly, distinct north-western and south-eastern subprovinces can be defined. The evaluation of enrichment factors, that is the abundance ratio between the average contents of each element in the relatively primitive lavas of the low K- and the high K suites, shows that the mantle sources prior to K-metasomatism were different in the two sub-provinces of the Roman Province. In the north-western one, they resembled the sources of ocean-island tholeiites and moderately enriched MOR-basalts. In the south-east they were similar to those of ocean island alkaline lavas and enriched MORB's.

Modelling based on K, P, Ce, Sr, Rb, Ba, Th, Sm, Eu, Gd, Y, Nb and 87Sr/86Sr was carried out. It indicates that the range of mantle sources of the volcanics in northwestern Campania and Latium can be modelled by the addition of 3 to 20% of materials derived by partial melting of carbonaceous pelites to a Sr-enriched mantle wedge comparable to the Honolulu mantle source least enriched in Nb.

The production of Sr-enriched mantle wedge requires either the action of fluids produced by dehydration of subducted oceanic crust, or a small amount of metasomatism caused by the presence of carbonatite melts.

The near absence of Ti, Ta, Nb, Yb and the highly fractionated REE in the metasomatizing component requires the presence of residual garnet and accessory Ti-rich minerals during the partial melting of the subducted sediments. The writers propose that the mantle wedge overlying the subducted slab was hybridized by melts produced by partial fusion of subducted material derived from the continental crust, probably sediments. This process played a dominant role in the generation of the mantle sources from which the high-K calc-alkaline, shoshonitic, leucite-basanitic and leucititic magmas of the Roman Province were derived.  相似文献   


15.
Central Mindanao was the locus of a Pliocene (4–5 Ma old) arc–arc collision event followed by basaltic to dacitic magmatism starting at 2.3 Ma, representing the most voluminous volcanic field in the Philippines. Lava compositions range from calc-alkaline to shoshonitic. Adakites and Nb-enriched basalts are among the magmatic products. All the lavas are Na-rich (up to 4.88%), with Na2O/K2O ratios from 2.5 to 6.5. Sr, Nd and Pb isotopic compositions are similar to MORB, except for some shoshonitic lavas that have slightly less radiogenic Nd ratios. K-enrichment in basalts can be related to both fractional crystallization (FC) at moderate pressures and to partial melting of an enriched source. Trace element systematics indicate that the sub-central Mindanao mantle is characterized by the presence of garnet, phlogopite, amphibole, and perhaps some titanate phase. The enrichment of this source is attributed to the interaction of slab-derived melts, i.e., adakites, with the arc mantle. This would explain the presence of Nb-enriched basalts, transitional adakites and high-magnesium andesites, as well as the bulk Na-enrichment and relatively unradiogenic character of the central Mindanao lavas. We envision an ion-exchange type of enrichment, in which the HFSE, LILE and LREE, mobilized during slab melting, are preferentially enriched in the metasomatized mantle, resulting in a diversity of post-collision magma compositions. The MORB-like isotopic signatures of the central Mindanao lavas preclude important contributions of slab-derived hydrous fluids, sediments, continental crust or an OIB-type contaminant. Slab melting after cessation of subduction is deemed possible by thermal rebound of previously depressed geotherms. Initial contributions to mantle enrichment in post-collision sites may thus come from slab melts. In most other cases of post-collision magmatism, however, this signature can be easily masked by enrichments coming from other sources, e.g., the continental lithosphere.  相似文献   

16.
New data are obtained on the structure, evolution, and origin of zones of nontransform offsets of adjacent segments in the Mid-Atlantic Ridge (MAR), which, in contrast to transform fracture zones, so far are studied insufficiently. The effects of deep mantle plumes developing off the crest of the MAR on the processes occurring in the spreading zone are revealed. These results are obtained from the geological investigation of the crest of the MAR between 19.8 ° and 21° S, where bottom sampling, bathymetric survey, and magnetic measurements have been carried out previously. Two segments of the rift valley displaced by 10 km relative to each other along a nontransform offset are revealed. A volcanic center of a spreading cell, which has been active over the last 2 Ma, is located in the northern part of the southern segment and distinguished by a decreased depth of the rift valley and increased thickness of the crust. Magnesian, slightly evolved basalts of the N-MORB type are detected in this center, whereas evolved and high-Fe basalts are found beyond it. The variation in the composition of the basalts indicates that the volcanic center is related to the upwelling of the asthenospheric mantle, which spread along and across the spreading ridge. In the lithosphere, the melt migrated off the volcanic center along the rift valley. In the northern segment, a vigorous volcanic center arose 2.5 Ma ago near its southern end; at present, the volcanic activity has ceased. As a result of the volcanic activity, an oval rise composed of enriched T-MORB-type basalts was formed at the western flank of the crest zone. The isotopic signatures show that the primary melts are derivatives of the chemically heterogeneous mantle. The mixing of material of the depleted mantle with the mantle material pertaining either to the Saint Helena or the Tristan da Cunha plumes is suggested; the mixture of all three sources cannot be ruled out. The conclusion is drawn that the mantle material of the Saint Helena plume was supplied to the melting zone beneath the axial rift near the oval rise along a linear permeable zone in the mantle extending at an azimuth of 225° SW. The blocks of mantle material that got to the convecting mantle from the Tristan da Cunha plume at the stage of supercontinent breakup were involved in melting as well. The nontransform offset between the two segments arose on the place of a previously existing transform fracture zone about 5 Ma ago. The nontransform offset developed in the regime of oblique spreading at the progressive propagation of the southern segment to the north. The zone of nontransform offset is characterized by recent volcanic activity. Over the last 2 Ma, spreading of the studied MAR segment was asymmetric, faster in the western direction. The rates of westward and eastward half-spreading in the northern segment are estimated at 1.88 and 1.60 cm/yr, respectively.  相似文献   

17.
The discovery of glaucophane relicts in the high-pressure tectonites of the Yenisei suture zone of the Yenisei Ridge suggests the manifestation of the “Chilean-type” convergent margin on the western Siberian Craton, which was controlled by subduction of oceanic crust beneath the continental margin. These rocks are restricted to the tectonic suture between the craton and the Isakovka ocean-island terrane and experienced two metamorphic stages. Petrogeochemical characteristics of the mafic tectonites indicate that their protoliths are N-MORB and E-MORB basalts. More primitive N-MORB basalts were formed at the initial spreading stages through melting of the upper depleted mantle. Higher Ti basalts were formed by melting of enriched mantle protolith at the later spreading stages. U–Pb zircon age of 701.6 ± 8.4 Ma of the metamorphosed analogues of normal basalts marks the initiation of oceanic crust in the region. Revealed sequence of spreading, subduction (640–620 Ma), and shear deformations (~600 Ma) records the early stages in the evolution of the Paleoasian ocean in its junction zone with the western margin of the Siberian craton: from formation of fragments of oceanic crust to the completion of accretionary–subduction events.  相似文献   

18.
The study provides new understanding of magmatism at extinct and modern spreading zones around the western margin of East Antarctica from Bransfield Strait to the Bouvet Triple Junction (BTJ) in the Atlantic Ocean and reveals causes of geochemical heterogeneity of mantle magmatism during the early opening of the Southern Ocean. The results indicate the involvement of an enriched source component in the generation of parental melts, which was formed in several tectonic stages. The enriched (metasomatized) mantle generated at rift zones has geochemical characteristics typical of the western Gondwana lithosphere (with isotopic compositions similar to those inferred for the enriched HIMU and EM-2 sources). This mantle source may have been produced by the thermal erosion of the continental mantle during the early stages of the Karoo–Maud–Ferrar superplume activity. This enriched mantle generated in the apical parts of the plume (sub-oceanic) began to melt during tectonic displacement and fragmentation of Gondwana. The Bouvet Triple Junction, located along modern spreading zones between the Antarctic and South American plate, is characterized by a greater depth of melting and a higher degree of enrichment of primary tholeiitic magmas. The highest enrichment of magmas in this region is controlled by a contribution from a pyroxenite-rich component, which was also identified in the extinct spreading center in Powell Basin.  相似文献   

19.
Abstract Basaltic basement has been recovered by deep-sea drilling at seven sites on the linear Ninetyeast Ridge in the eastern Indian Ocean. Studies of the recovered lavas show that this ridge formed from ~ 82 to 38 Ma as a series of subaerial volcanoes that were created by the northward migration of the Indian Plate over a fixed magma source in the mantle. The Sr, Nd and Pb isotopic ratios of lavas from the Ninetyeast Ridge range widely, but they largely overlap with those of lavas from the Kerguelen Archipelago, thereby confirming previous inferences that the Kerguelen plume was an important magma source for the Ninetyeast Ridge. Particularly important are the ~ 81 Ma Ninetyeast Ridge lavas from DSDP Site 216 which has an anomalous subsidence history (Coffin 1992). These lavas are FeTi-rich tholeiitic basalts with isotopic ratios that overlap with those of highly alkalic, Upper Miocene lavas in the Kerguelen Archipelago. The isotopic characteristics of the latter which erupted in an intraplate setting have been proposed to be the purest expression of the Kerguelen plume (Weis et al. 1993a,b). Despite the overlap in isotopic ratios, there are important compositional differences between lavas erupted on the Ninetyeast Ridge and in the Kerguelen Archipelago. The Ninetyeast Ridge lavas are dominantly tholeiitic basalts with incompatible element abundance ratios, such as La/Yb and Zr/Nb, which are intermediate between those of Indian Ocean MORB (mid-ocean ridge basalt) and the transitional to alkalic basalts erupted in the Kerguelen Archipelago. These compositional differences reflect a much larger extent of melting for the Ninetyeast Ridge lavas, and the proximity of the plume to a spreading ridge axis. This tectonic setting contrasts with that of the recent alkalic lavas in the Kerguelen Archipelago which formed beneath the thick lithosphere of the Kerguelen Plateau. From ~ 82 to 38 Ma there was no simple, systematic temporal variation of Sr, Nd and Pb isotopic ratios in Ninetyeast Ridge lavas. Therefore all of the isotopic variability cannot be explained by aging of a compositionally uniform plume. Although Class et al. (1993) propose that some of the isotopic variations reflect such aging, we infer that most of the isotopic heterogeneity in lavas from the Ninetyeast Ridge and Kerguelen Archipelago can be explained by mixing of the Kerguelen plume with a depleted MORB-like mantle component. However, with this interpretation some of the youngest, 42–44 Ma, lavas from the southern Ninetyeast Ridge which have206pb/204Pb ratios exceeding those in Indian Ocean MORB and Kerguelen Archipelago lavas require a component with higher206Pb/204Pb, such as that expressed in lavas from St. Paul Island.  相似文献   

20.
We need to understand chemical recycling at convergent margins and how chemical interactions between subducted slab and the overlying mantle wedge affect mantle evolution and magmagenesis. This requires distinguishing contributions from recycled individual subducted components as well as those contributed by the mantle. We do this by examining magmatic products generated at different depths above a subduction zone, in an intra-oceanic arc setting. The Guguan cross-chain in the intra-oceanic Mariana arc overlies subducted Jurassic Pacific plate lithosphere at depths of ~125--230 km and erupts mostly basalt. Basalts from rear-arc volcanoes are more primitive than those from the magmatic front, in spite of being derived by lower degrees of melting of less-depleted mantle. Rear-arc magmas also show higher temperatures and pressures of equilibration. Coexisting mineral compositions become more MORB- or OIB-like with increasing height above the subduction zone. Trace element and isotopic variations indicate that the subduction component in cross-chain lavas diminishes with increasing depth to the subduction zone, except for water contents. There is little support for the idea that melting beneath the Mariana Trough back-arc basin depleted the source region of arc magmas, but melting to form rear-arc volcanoes may have depleted the source of magmatic front volcanoes. Enrichments in rear-arc lavas were not caused by sediment melting; the data instead favor an OIB-type mantle that has been modestly affected by subduction zone fluids. Our most important conclusion is that sediment fluids or melts are not responsible for the K--h relationship and other cross-chain chemical and isotopic variations. We speculate that an increasing role for supercritical fluids released from serpentinites interacting with modestly enriched mantle might be responsible for cross-chain geochemical and isotopic variations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号