首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

2.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

3.
Abstract Seismometers were installed at three depths in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m borehole drilled into the Nojima Fault zone, southwest Japan. The waveforms recorded by these seismometers are rather simple compared with those recorded at the DPRI 800 m borehole or on the ground surface. These data should be well suited for detecting fault zone-trapped waves and estimating the fault zone structure and its temporal variation related to the healing process of the ruptured fault. Typical waveforms trapped in the fault zone were observed by a surface seismographic array across the Nojima Fault just after the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). Among the wave data recorded in the DPRI 1800 m borehole, however, clear evidences of fault zone-trapped waves have not yet been found, and further studies are continuing. The present study outlines the observation system in the DPRI 1800 m borehole, which will make it easier to access and analyze the borehole data.  相似文献   

4.
Masataka Ando 《Island Arc》2001,10(3-4):206-214
Abstract The Nojima Fault Zone Probe was designed to study the properties and recovery processes of the Nojima Fault, which moved during the Hyogo-ken Nanbu earthquake ( M JMA7.2) of 1995. Three holes, 500 m, 800 m and 1800 m deep, were drilled into or near the fault zone by the Disaster Prevention Research Institute, Kyoto University. The 500 m and 800 m holes were drilled in November 1995, and in December 1996 the last hole reached its final depth of 1760 m. The significant results are: (i) Geological and geophysical reconstruction of the structure and evolution of the Nojima Fault was obtained; (ii) the maximum compression axis was found to be perpendicular to the fault, approximately 45° to the regional compression stress axis; (iii) micro-earthquakes (m = –2 to +1) were induced by water injections 1–3 km from the injection points in the 1800 m hole; (iv) the fault zone was measured to be 30 m wide from microscopic studies of core samples. Instruments such as three-component seismometers, crustal deformation instruments, and thermometers were installed in the holes.  相似文献   

5.
Abstract Long-term monitoring of temperature distribution in an active fault zone was carried out using the optical fiber temperature-sensing technique. An optical fiber cable was installed in a borehole drilled into the Nojima Fault in Awaji Island, south-west Japan, and the temperature profile to a depth of 1460 m had been measured for 2.5 years (July 1997–January 2000). Although the obtained temperature records showed small temporal variations due to drifts of the measurement system all along the cable, local temperature anomalies were detected at two depths. One at around 80 m seems to correspond to a fracture zone and may be attributed to groundwater flow in the fracture zone. This anomaly had been stable throughout the monitoring period, whereas the other anomaly at around 500 m was a transient one. The water level in the borehole could be estimated from the diurnal temperature variations in the uppermost part of the borehole and may provide information on the hydrological characteristics of the fault zone, which is connected to the borehole through perforations on the casing pipe. Except for these minor variations, the temperature profile had been very stable for 2.5 years. The conductive heat flow calculated from this profile and the thermal conductivity measured on core samples increases with depth, probably resulting from errors in thermal conductivity due to sampling problems and/or from advective heat transfer by regional groundwater flow. Assuming that the middle part of the borehole (less fractured granite layer) is least affected by these factors, heat flow at this site is estimated to be approximately 70 mW/m2.  相似文献   

6.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   

7.
Abstract A multi-offset hydrophone vertical seismic profiling (VSP) experiment was done in a 747 m deep borehole at Nojima Hirabayashi, Hyogo prefecture, Japan. The borehole was drilled to penetrate the Nojima Fault, which was active in the 1995 Hyogo-ken Nanbu earthquake. The purpose of the hydrophone VSP is to detect subsurface permeable fractures and permeable zones and, in the present case, to estimate the permeability of the Nojima Fault. The analysis was based on a model by which tube waves are generated when incident P-waves compress the permeable fractures (or permeable zones) intersecting the borehole and a fluid in the fracture is injected into the borehole. Permeable fractures (or permeable zones) are detected at the depths of tube wave generation, and fracture permeability is calculated from the amplitude ratio of tube wave to incident P-wave. Several generations of tube waves were detected from the VSP sections. Distinct tube waves were generated at depths of the fault zone that are characterized by altered and deformed granodiorite with a fault gouge, suggesting that permeable fractures and permeable zones exist in the fault zone. Tube wave analysis shows that the permeability of the fault gouge from 624 m to 625 m is estimated to be approximately 2 × 10−12 m2.  相似文献   

8.
Abstract The 1995 Hyogo-ken Nanbu (Kobe) earthquake, M 7.2, occurred along the north-east–south-west trending Rokko–Awaji Fault system. Three boreholes of 1001 m, 1313 m and 1838 m deep were drilled in the vicinity of the epicenter of the earthquake. Each borehole is located at characteristic sites in relation to active faults and the aftershock distribution. In particular, the Nojima–Hirabayashi borehole [Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drilling] in Awaji Island was drilled to a depth of 1838 m, approximately 320 m southeast from the surface rupture of the Nojima Fault, and it crosses fracture zones below a depth of 1140 m. In situ stress measurements by the hydraulic fracturing method were conducted in these boreholes within 1.5 years after the earthquake. Measurement results suggest the following: (i) Differential stress values are very small, approximately 10 MPa at a depth of 1000 m at each site; (ii) the orientation of maximum horizontal compression is almost the same in the boreholes, perpendicular to the surface trace of the faults, north-west–south-east; (iii) fault types estimated from the state of stress differ among these sites; and (iv) the differential stress value just beneath the fault fracture zone decreases abruptly to one-half of that above the fault zone in the Hirabayashi NIED drilling. These features support the idea that the shear stress along the Rokko–Awaji Fault system decreased to a low level just after the earthquake.  相似文献   

9.
Ryuji Ikeda 《Island Arc》2001,10(3-4):199-205
Abstract Three boreholes, 1001 m, 1313 m and 1838 m deep, were drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) in the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake to investigate tectonic and material characteristics near and in active faults. Using these boreholes, an integrated study of the in situ stress, heat flow, and material properties of drill cores and crustal resistivity was conducted. In particular, the Nojima–Hirabayashi borehole was drilled to a depth of 1838 m and directly intersected the Nojima Fault, and three possible fault strands were detected at depths of 1140 m, 1313 m and 1800 m. Major results obtained from this study include the following: (i) shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults; (ii) from the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300°C; (iii) cores were classified into five types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified; (iv) country rock is characterized by a very low permeability and high strength; and (v) resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity.  相似文献   

10.
Abstract Electron spin resonance (ESR) analyses of quartz grains in fault gouge were performed for a core sample taken from the Nojima Fault that moved during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Distribution of radiation-induced defects in the gouge at a depth of 389.4 m was measured by extracting quartz grains from seven discrete positions within 30 mm of the fault plane on the granite side. The decrease in E'1 and Al centers was observed within 2 mm of the fault plane, suggesting partial annealing due to faulting. Partial annealing even at that depth suggested that conventional ESR dating, which is based on the hypothesis of complete annealing during faulting, was not applicable. Theoretical calculations of the temperature rise and of the thermal annealing of defects have been made by assuming a simple annealing model of heat generation on the fault plane. Thermal energy was calculated to have been approximately 8 MJ/m2 to explain the profile of the heat-affected region. Thermal energy was much larger than the one estimated from hydrothermal solution, and corresponded to the frictional heat calculated for a normal stress of 20 MPa, a displacement of 2 m, and a frictional coefficient of 0.2.  相似文献   

11.
Terrestrial heat flow at Hirabayashi on Awaji Island, south-west Japan   总被引:1,自引:0,他引:1  
Abstract Terrestrial heat flow at Hirabayashi in Awaji Island, south-west Japan, was investigated using the deep borehole penetrating through the Nojima Fault, which was activated during the 1995 Hyogo-ken Nanbu earthquake, by measuring the thermal conductivity of basement rocks. Using the temperature logging data, the value of terrestrial heat flow in Hirabayashi was found to be 56.6 ± 5.2 mW/m2. The relationship between cut-off depth of aftershocks of the Hyogo-ken Nanbu earthquake in Hirabayashi and terrestrial heat flow are discussed. The cut-off depth roughly corresponds to isotherms of 300°C.  相似文献   

12.
Abstract An 800 m borehole was drilled near the Nojima Fault, on which a strike–slip larger then 1 m occurred during the 1995 Hyogo-ken Nanbu earthquake ( M = 7.2). Crustal activity near the fault has been observed since May 1996 using a multicomponent instrument installed at the bottom of the borehole. Data of three components of strain, two components of tilt and temperature observed from May 1996 to December 1998 were analyzed. Long-term changes of strain and tilt show a north-east–south-west extension and southwards subsidence. As for the Earth tides and atmospheric effect, orientation of the principal axis of strain was mainly east-west and orientation of the maximum subsidence was mainly north-south. The observational data of strain had variations corresponding to a change in temperature at a depth of 800 m. The thermal expansion coefficient of the crust was calculated to be approximately 2.0 × 10−6/°K.  相似文献   

13.
Aiming  Ian Shinichi  Uda 《Island Arc》1996,5(1):1-15
Abstract The earthquake surface ruptures on the northern side of Awaji Island accompanying the 1995 Southern Hyogo Prefecture Earthquake in Japan consist of three earthquake surface rupture zones called the Nojima, Matsuho, and Kusumoto Earthquake Surface Rupture Zones. The Nojima Earthquake Surface Rupture Zone is - 18 km long and was formed from Awaji-cho at the northern end of Awaji Island to Ichinomiya-cho. It occurred along the pre-existing Nojima geological fault in the northern segment and as a new fault in the southern segment. The northern segment of the Nojima Earthquake Surface Rupture Zone is composed of some subparallel shear faults showing a right-step en echelon form and many extensional cracks showing a left-step en echelon form. The southern segment consists of some discontinuous surface ruptures which are concentrated in a narrow zone a few tens of meters in width. This surface rupture zone shows a general trend striking north 30°-60° east, and dipping 75°-85° east. The deformational topographies and striations on the fault plane generated during the co-seismic displacement show that the Nojima Earthquake Surface Rupture Zone is a right-lateral strike-slip fault with some reverse component. Displacements measured at many of the outcrops are generally 100-200 em horizontally and 50-100 em vertically in the northern segment and a few em to 20 em both horizontally and vertically in the southern segment. The largest displacements are 180 em horizontally, 130 em vertically, and 215 em in netslip measured at the Hirabayashi fault scarp. The Matsuho Earthquake Surface Rupture Zone striking north 40°-60° west was also found along the coastline trending northwest-southeast in Awaji-cho for ~1 km at the northern end of Awaji Island. The Kusumoto Earthquake Surface Rupture Zone occurred along the pre-existing Kusumoto geological fault for ~ 1.5 km near the northeastern coastline, generally striking north 35°-60° east, dipping 60°-70° west. From the morphological and geomorphological characteristics, the Nojima Earthquake Surface Rupture Zone can be divided into four segments which form a right-step en echelon formation. The geological and geomorphological evidence and the aftershock epicenter distributions show clearly that the distributions and geometry of these four segments are controlled by the pre-existing geological structures.  相似文献   

14.
Abstract This paper describes the results of petrographical and meso- to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid-related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay-rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.  相似文献   

15.
Abstract In order to make geophysical and geological investigations of the Nojima Fault on Awaji Island, Japan, three boreholes measuring 1800 m, 800 m and 500 m deep were drilled into the fault zone. The fault is one of the seismic source faults of the 1995 Hyogo-ken Nanbu earthquake of M 7.2. A new multicomponent borehole instrument was installed at the bottom of the 800 m borehole and continuous observations of crustal strain and tilt have been made using this instrument since May 1996. A high-pressure water injection experiment within the 1800 m borehole was done in February and March 1997 to study the geophysical response, behavior, permeability, and other aspects of the fault zone. The injection site was located approximately 140 m horizontally and 800 m vertically from the instrument. Associated with the water injection, contraction of approximately 0.7 × 10−7 str (almost parallel to the fault) and tilt of approximately 1 × 10-7 rad in the sense of upheaval toward the injection site were observed. In addition to these controlled experiments, the strainmeter and tiltmeter also recorded daily variations. We interpret strain and tilt changes to be related to groundwater discharge and increased ultra-micro seismicity induced by the injected water.  相似文献   

16.
Abstract Crack-filling clays and weathered cracks were observed in the Disaster Prevention Research Institute, Kyoto University (DPRI) 1800 m cores drilled from the Nojima Fault Zone, which was activated during the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). The crack-filling clays consist mainly of unconsolidated fine-grained materials that fill opening cracks with no shear textures. Most of the cracks observed in the DPRI 1800 m cores are yellow-brown to brown in color due to weathering. Powder X-ray diffraction analyses show that the crack-filling clays are composed mainly of clay minerals and carbonates such as siderite and calcite. Given that the top of the borehole is approximately 45 m above sea level, most of the core is far below the stable groundwater table. Hence, it is suggested that the crack-filling clays and weathered cracks in the cores taken at depths of 1800 m were formed by the flow of surface water down to the deep fractured zone of the Nojima Fault Zone during seismic faulting.  相似文献   

17.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   

18.
Abstract The temporal variation of seismic velocity near the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake), was detected using an accurately controlled routine-operated seismic source (ACROSS). The source generates elastic waves by a centrifugal force of an eccentric mass rotating around an axis. The mass is driven with an AC servomotor whose angular position is accurately controlled with reference to a very accurate global positioning system (GPS) clock. The error of the mass' position is less than 0.002 radian and does not accumulate. As a result, the source generates sinusoidal waves of very narrow spectral peaks enabling their detection with an excellent signal-to-noise ratio. Although the stability of the rotation is quite excellent, a large daily variation was found, which seems to be caused by changes in atmospheric temperature. The daily variation was 10% in amplitude and 0.1 radian in phase of the signal observed at the 800 m borehole seismometer. A significant variation was found to be due to that of coupling between the rotational source and the foundation made of reinforced concrete in which the source was situated. In order to make a correction on the signal of the 800 m borehole seismometer, the vibration of the foundation was measured and modeled assuming a rigid body movement. The correction successfully reduced the daily variation by approximately 90%, resulting in a variation of 1% in amplitude and 0.01 radian in phase. The phase variation of 0.01 radian corresponds to 100 μs and less than 0.1% in velocity over 1000 m between the source and the receiver.  相似文献   

19.
The stress state near the Gofukuji Fault, central Japan, was estimated by simultaneously applying deformation rate analysis (DRA), the acoustic emission (AE) method, and AE rate analysis (AERA) to drilling core samples recovered from depths of 327 and 333 m at a site close to the fault. The obtained stress state was for a strike‐slip fault. It is predicted from the estimated stresses that a tensile stress of 6.4 ± 1.1 MPa acted on the borehole wall at 333 m depth during drilling. This is comparable to the typical tensile strength of granodiorite. The tensile stress estimated at 327 m depth is less than the tensile strength. This is consistent with observations of drilling‐induced tensile fracture (DITF) at depths between 329 and 334 m. Ratios of the shear stress to normal stress (normalized shear stress) acting on the fault are calculated to be 0.4–1.0, which are comparable to friction coefficients of rocks measured in laboratories. The large normalized shear stress may represent strength recovery of the Gofukuji Fault. The impendency of earthquake occurrence on this fault is evaluated to be high from the recurrence interval of earthquakes on the fault.  相似文献   

20.
Stresses at sites close to the Nojima Fault measured from core samples   总被引:2,自引:0,他引:2  
Abstract The Nojima Fault in Awaji, Hyogo prefecture, Japan, was ruptured during the 1995 Hyogo-ken Nanbu earthquake ( M JMA = 7.2). Toshima is located close to the fault segment, in which a large dislocation has been observed on the Earth's surface. Ikuha is near the southern end of the buried fault that extends from the surface rupture. Stresses are measured on core samples taken at depths of 310 m, 312 m and 415 m at Toshima and a depth of 351 m at Ikuha. The measured stresses show that both sites are in the field of a strike–slip regime, but compression dominates at Toshima. Defining the relative shear stress as the maximum shear stress divided by the normal stress on the maximum shear plane, the relative shear stress ranges from 0.42 to 0.54 at Toshima and is approximately 0.32 at Ikuha. While the value at Ikuha is moderate, those at Toshima are comparably large to those in areas close to the inferred fault of the 1984 Nagano-ken Seibu earthquake. Value amounts greater than 0.4 suggest that there are areas of large relative shear stress along faults, thus having the potential to generate earthquakes. Provided that the cores are correctly oriented, the largest horizontal stresses at shallow depths are in the direction from N113°E to N139°E at Toshima and N74°E at Ikuha, indicating that the fault does not orient optimally for the stress field at both sites. The slip is known to be predominant in the right-lateral strike–slip component. Although this slip may appear contradictory to the stress field at Toshima, the slip direction is found to be parallel to the measured stresses resolved on the fault plane for the first approximation. The ratio of shear stress to normal stress on the fault plane is roughly estimated to be greater than zero and smaller than 0.3 near Toshima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号