首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We give an overview of the Car phenomenon on the basis of ground and space observations. We discuss in particular the IRAS images. We conclude that Car, initially with a mass > 100M , is presently an intermediate-type hypergiant withL=5×106 L , in a rapid evolutionary stage. This phase started with a large increase of mass loss in mid-1800 followed by dust condensation and a large visual fading, at constant bolometric luminosity.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

2.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

3.
. , , . , t>1010 ( z<105) .
In this paper we continue the work of Weymann, investigating the causes of distortion of the spectrum of the residual radiation from the Planck curve. We discuss the distortion to the spectrum, resulting from recombination of primeval plasma.We then derive an analytic expression for the distortion to the equilibrium spectrum due to Compton scattering by hot electrons. On the basis of the observational data we conclude that a period of the existence of neutral hydrogen is inescapable in the hot model of the universe. It is concluded that any injection of energy att>1010 sec (red shiftz<105) give the distortions of the equilibrium spectrum.
  相似文献   

4.
5.
6.
We propose that the coronal source longitude and latitude of solar wind plasma can be estimated within 10°. Previous writers have argued that the solar wind in the ecliptic should originate near the equator and that a quasi-radial hypervelocity (QRH) approximation (constant radial flow) is valid beyond the magnetohydrodynamic critical points. We demonstrate that an extension of the QRH approximation (as if the solar wind flowed radially with constant velocity from the center of the Sun) yields a proper estimate of the high coronal source location at the release zone where the solar wind makes its transition to radial interplanetary flow. This extrapolated QRH (or EQRH) approximation succeeds because the two main corrections to this source estimate, coronal corotation and interplanetary acceleration, tend to cancel (the former correcting the source location eastward, the latter westward). Although this ideal spiral approximation was first suggested by Snyder and Neugebauer (1966), only recently has it been demonstrated that it relates a wide range of interplanetary plasma, magnetic field and energetic particle data to observed coronal magnetic structure. We estimate quantitatively the error in the EQRH approximation by comparison with steady-state streamlines predicted by azimuthally independent and dependent theoretical solutions to the steady-state plasma equations. We find the error in both cases 10° in longitude and therefore suggest that the EQRH approximation offers the means to relate observed solar initial conditions in the release zone directly to interplanetary measurements. If, in addition, the EQRH approximation also leads to agreement with low coronal structure, then there should be a straightforward correspondence to otherwise unobservable high coronal structure.  相似文献   

7.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

8.
Some peculiarities in the behaviour of a model self-gravitating system described by hydrodynamical equations and isothermal equation of state connected with the presence of thermodynamical fluctuations in real systems were investigated in numerical experiment. The values of density and velocity , , respectively, were computed by numerical code perturbed on each time-step and in each computational cell by random values , for modeling such fluctuations. Perturbed values i = i + i ,v i = i + v i were used to initiate the next step of computations. This procedure is equivalent to an introduction into original hydrodynamical equations of Langevin sources which are random functions. It is shown that these small fluctuations (= v =0,2 =v 2 = 10–8) grow many times in marginally-stable state.  相似文献   

9.
We emphasize the sharp distinctions between different one-body gravitational trajectories made by the ratio of time averagesR(t)E kin/E pot.R is calculated as a function of the eccentricity (e) and of the energy (E). Whent, independently ofe andE, R1/2 for closed orbits (this clearly illustrates the fulfillment of the virial theorem in classical mechanics); whereasR1, at any time, for open orbits.  相似文献   

10.
11.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

12.
13.
Singh  Jagdev  Sakurai  Takashi  Ichimoto  Kiyoshi  Muneer  S. 《Solar physics》2003,212(2):343-359
Spectra around the 6374 Å [Fex] and 7892 Å [Fexi] emission lines were obtained simultaneously with the 25-cm coronagraph at Norikura Observatory covering an area of 200 ×500 of the solar corona. The line width, peak intensity and line-of-sight velocity for both the lines were computed using Gaussian fits to the observed line profiles at each location (4 ×4 ) of the observed coronal region. The line-width measurements show that in steady coronal structures the FWHM of the 6374 Å emission line increases with height above the limb with an average value of 1.02 mÅ arc sec–1. The FWHM of the 7892 Å line also increases with height but at a smaller average value of 0.55 mÅ arc sec–1. These observations agree well with our earlier results obtained from observations of the red, green, and infrared emission lines that variation of the FWHM of the coronal emission lines with height in steady coronal structures depends on plasma temperatures they represent. The FWHM gradient is negative for high-temperature emission lines, positive for relatively low-temperature lines and smaller for emission lines in the intermediate temperature range. Such a behaviour in the variation of the FWHM of coronal emission lines with height above the limb suggests that it may not always be possible to interpret an increase in the FWHM of emission line with height as an increase in the nonthermal velocity, and hence rules out the existence of waves in steady coronal structures.  相似文献   

14.
Résumé Il est envisagé dans ce travail un cas particulier du problème des trois corps solides. On suppose qu'un des corps est passif, c'est-à-dire qu'il n'agit pas sur les deux autres. Chaque corps posséde la symétrie axiale, ainsi que la symétrie par rapport à plan, perpendiculaire à cet axe, Au moment initial les plans de la symétrie des corps coinsident avec le plan principal des coordonneés. Alors il est possible de choisir les conditions initiales de sorte que les centres de la symétrie resterons toujours dans le plan principal, chaque corps tournant uniformement autour son axe. Nous nommerons ce problème — le problème restreint plant. Le cas le plus simple est le problème plan circulire, quand le centre d'un des corps actif décrit orbite circulaire authour d'autre corps actif. Ce problème se reduit à l'étude du mouvement du centre d'inértie du corps passif dans le plan principal —plan d'orbite circulaire du corps actif. Nous trouvons les conditions d'existence pour les solutions particulières du ce problème et posons la question de la stabilité des points de libration correspondantes. D'une manière plus détaillée nous envisageons le cas, où toutes les forces actives sont définiérs une par loi unique.
, . , , , . . , , . . , , . , , . , , . . . , , .
  相似文献   

15.
The potential of a body of revolution is expanded in a series of spherical functions. It is proved that, for a body with analytical density limited by an analytical surface the coefficients of expansion decrease in geometrical progression.
. , , , .
  相似文献   

16.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

17.
A statistical analysis of solar particle events, observed by the GSFC-UNH charged particle detector on board Pioneer 10 and Pioneer 11 from March 1972 to December 1974 (from 1 to 5 AU for each spacecraft), is carried out with the goal of experimentally determining the statistical average interplanetary propagation conditions from 3 to 30 MeV. A numerical propagation model is developed that includes diffusion with a diffusion coefficient of the form k r =k o r , convection, adiabatic deceleration, and a variable coronal injection profile. The statistical analysis is carried out by individually analyzing each of five parameters (t max, (tmax), t 5, ) that are uniquely defined in a solar particle event. Each of the five parameter data sets were analyzed in terms of both a spacecraft-solar flare connection longitude 50°, and a numerical model that employed a variable exponential decaying coronal injection profile.The five individual parameter analyses are combined with the results that the statistical average radial interplanetary diffusion coefficient from 1 to 5 AU is given by k r = (1.2 ± 0.4) × 1021 cm2 s-1 with = 0.0± 0.3 for 3.4 to 5.2 MeV protons and k r = (2.6 ± 0.6) × 1021 cm2 s-1 with () = 0.0± 0.3 for 24 to 30 MeV protons. Using the classical relationship for the radial scattering mean free path r, i.e. k r = r/3, we obtain r = 0.09 ± 0.03 AU and 0.075 ± 0.020 AU for the low and high energy data, respectively. These results show, from 1 to 5 AU and from 3 to 30 MeV, that r is both independent of radial distance and approximately independent of rigidity (for r~P , where P = rigidity, = -0.15 ± 0.20).The above diffusion coefficients are inconsistent With both the predictions of the diffusion coefficient from present theoretical transport models and with the diffusion coefficient used in modulation studies at low energies.  相似文献   

18.
Low noise photoelectric measurements of the line profile of the g = 0 Fe line gl 5576.097 combined with determinations of the wavelength shift of its centre calibrated by use of an I 2 absorption tube are reported. Measurements taken at various limb distances (1.0 cos 0.2) and along 4 different diameters of the Sun are used to investigate the behaviour of the line asymmetry (C-shape) and wavelength shift of the line centre as functions of cos and of latitude and to search for possible pole-equator differences.An accuracy of approx. 0.8 mÅ r.m.s. is achieved for the determination of the centre of the solar line relative to the iodine lines and of 0.3 mÅ to 1 mÅ r.m.s. for the relative variations of the C-shape. The analysis shows a significant difference between the limb-effect curves along polar and equatorial diameters for cos 0.4 and changes of the C-shape for 0.9 cos 0.6 with a rather strong indication of a latitude dependence of the C-shape. This latitude dependence may account for the so-called ears observed by Howard et al. (1980) who used the well-known Doppler compensator method which integrates the line asymmetry from the line wings to the core.Mitteilungen aus dem Kiepenheuer-Institut Nr. 207.  相似文献   

19.
A limiting case of the problem of three bodies (m 0,m 1,m 2) is considered. The distance between the bodiesm 0 andm 1 is assumed to be much less than that between their barycenter and the bodym 2 so that one may use Hill's approximation for the potential of interaction between the bodiesm 1 andm 2. In the absence of resonant relations the potential, double-averaged by the mean longitudes ofm 1 andm 2, describes the secular evolution of the orbits in the first approximation of the perturbation theory.As Harrington has shown, this problem is integrable. In the present paper a qualitative investigation of the evolution of the orbits and comparison with the analogous case in the restricted problem are carried out.The set of initial data is found, for which a collision between the bodiesm 0 andm 1 takes place.The region of the parameters of the problem is determined, for which plane retrograde motion is unstable.In a special example the results of approximate analysis are compared with those of numerical integration of the exact equations of the three body problem.
m 0,m 1,m 2. , m 0 m 1. m 2, m 1 m 2 m 1 m 2 . , . . , m 0 m 1. , . .
  相似文献   

20.
We consider the formation of cometlike and larger bodies in the trans-Neptunian region of the protoplanetary gas–dust disk. Once the particles have reached 1–10 cm in size through mutual collisions, they compact and concentrate toward the midplane of the disk to form a dust subdisk there. We show that after the subdisk has reached a critical density, its inner, equatorial layer that, in contrast to the two subsurface layers, contains no shear turbulence can be gravitationally unstable. The layer breaks up into 1012-cm clumps whose small fragments (109 cm) can rapidly contract to form bodies 10 km in size. We consider the sunward drift of dust particles at a velocity that decreases with decreasing radial distance as the mechanism of radial contraction and compaction of the layer that contributes to its gravitational instability and the formation of larger (100 km) planetesimals. Given all of the above processes, it takes 106 yr for planetesimals to form, which is an order of magnitude shorter than the lifetime of the gas–dust protoplanetary disk. We discuss peculiarities of the structure of planetesimals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号