首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The area surrounding the Colorado Department of Transportation Materials Testing Laboratory in Denver was the subject of intense investigation, involving the collection of thousands of ground water, soil-gas, and indoor air samples in order to investigate indoor air impacts associated with a subsurface release of chlorinated solvents. The preremediation portion of that data set is analyzed and reduced in this work to ground water–to-indoor air attenuation factors (αgw= the ratio of the measured indoor air concentration to the soil-gas concentration predicted to be in equilibrium with the local ground water concentration). The empirical αgw values for this site range from about 10−6 to 10−4 with an overall average of 3 × 10−5 (μg/L indoor air)/(μg/L soil gas). The analysis of this data set highlights the need for a thorough data review and data screening when using large data sets to derive empirical relationships between subsurface concentrations and indoor air. More specifically, it is necessary to identify those parts of the data that contain a strong vapor intrusion pathway signal, which generally will require concentrations well above reported detection levels combined with spatial or temporal correlation of subsurface and indoor concentrations.  相似文献   

2.
Domestic water wells are routinely subjected to in situ chemical disinfection treatments to control nuisance or pathogenic bacteria. Most treatments are chlorine based and presumably cause strongly oxidizing conditions in the wellbore. Water resource managers in Wisconsin were concerned that such treatments might facilitate release of arsenic from sulfide minerals disseminated within a confined sandstone aquifer. To test this hypothesis, a well was subjected to four disinfection treatments over 9 months time. The first treatment consisted of routine pumping of the well without chemical disinfection; three subsequent treatments included chlorine disinfection and pumping. Pretreatment arsenic concentrations in well water ranged from 7.4 to 18 μg/L. Elevated arsenic concentrations up to 57 μg/L in the chemical treatment solutions purged from the well are attributed to the disintegration or dissolution of biofilms or scale. Following each of the four treatments, arsenic concentrations decreased to less than 10 μg/L during a period of pumping. Arsenic concentrations generally returned to pretreatment levels under stagnant, nonpumping conditions imposed following each treatment. Populations of iron-oxidizing, heterotrophic, and sulfate-reducing bacteria decreased following chemical treatments but were never fully eradicated from the well. Strongly oxidizing conditions were induced by the chlorine-based disinfections, but the treatments did not result in sustained increases in well water arsenic. Results suggest that disruption of biofilm and mineral deposits in the well and the water distribution system in tandem with chlorine disinfection can improve water quality in this setting.  相似文献   

3.
Trihalomethanes (THMs) are formed by the reaction of reactive chlorine species, such as hypochlorous acid, with naturally occurring organic matter. THMs are also found in soil and groundwater at sites where releases of organic solvents have occurred and are often ascribed to the biological degradation chlorinated solvents. This research was prompted by the discovery of THMs in groundwater at a site with a reported discharge of sodium hypochlorite. This paper reports the formation of THMs in soil and water resulting from the reaction of sodium hypochlorite with soil. Soil samples were reacted with dilute bleach solutions (sodium hypochlorite) and the solution collected for analysis by gas chromatography/mass spectrometry. All THMs were detected in test samples after treatment. Concentrations of chloroform up to 2450 µg/L in aqueous extracts were detected compared to 40 µg/L in bleach and 1 µg/L in blank samples.  相似文献   

4.
Sharma S  Frost CD 《Ground water》2008,46(2):329-334
Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using δ13C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG)–coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive δ13CDIC (12‰ to 22‰) that is readily distinguished from the negative δ13C of most surface and ground water (−8‰ to −11‰). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high δ13C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the δ13CDIC and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the δ13CDIC of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using δ13CDIC to distinguish water produced from different coal zones.  相似文献   

5.
Electromigration is proposed as an in situ method for preconcentrating contaminants in ground water prior to pumping and treating. In earlier investigations by the senior author and co-workers, it was found that Cu in synthetic ground water migrated strongly to a Pt cathode and plated out as metallic copper. In the present study, carbon electrodes were inserted into a laboratory column of fine quartz sand that was saturated with a lower concentration of CuSO4 solution. A fixed potential of 2.5 V was applied, causing dissolved Cu and SO4 to accumulate strongly at the cathode and anode, respectively. Only minor plating-out of Cu took place on the carbon electrodes. In addition to the use of carbon electrodes, the present research also investigated the effects of a lower concentration of metal, accumulation of SO4 adjacent to the anodes, adsorption of Cu on the sand, and competition by moving ground water.
At an imposed voltage of 2.5 V and in the presence of 65 mg/L of dissolved Cu and 96 mg/L of SO4 (0.001 M CuSO4 solution), electrolysis of water caused large changes in the pH and speciation of the aqueous components, as well as precipitation of solid Cu-hydroxides. Significant retardation of Cu occurred in the presence of ground water flowing at an average intergranular velocity of 0.2 m/day, but only minor retardation at water velocities of 1.9 and 2.9 m/day.
Sulfate tends to migrate strongly to the anodes, suggesting that in situ electromigration may offer a useful new method for preconcentrating such highly soluble ions as SO4, NO3, and CI that are difficult to remove by conventional pump-and-treat methods. A number of potential problems exist that should be addressed in a field test.  相似文献   

6.
To assess the vulnerability of ground water to contamination in the karstic Upper Floridan aquifer (UFA), age-dating tracers and selected anthropogenic and naturally occurring compounds were analyzed in multiple water samples from a public supply well (PSW) near Tampa, Florida. Samples also were collected from 28 monitoring wells in the UFA and the overlying surficial aquifer system (SAS) and intermediate confining unit located within the contributing recharge area to the PSW. Age tracer and geochemical data from the earlier stage of the study (2003 through 2005) were combined with new data (2006) on concentrations of sulfur hexafluoride (SF6), tritium (3H), and helium-3, which were consistent with binary mixtures of water for the PSW dominated by young water (less than 7 years). Water samples from the SAS also indicated mostly young water (less than 7 years); however, most water samples from monitoring wells in the UFA had lower SF6 and 3H concentrations than the PSW and SAS, indicating mixtures containing high proportions of older water (more than 60 years). Vulnerability of the PSW to contamination was indicated by predominantly young water and elevated nitrate-N and volatile organic compound concentrations that were similar to those in the SAS. Elevated arsenic (As) concentrations (3 to 19 μg/L) and higher As(V)/As(III) ratios in the PSW than in water from UFA monitoring wells indicate that oxic water from the SAS likely mobilizes As from pyrite in the UFA matrix. Young water found in the PSW also was present in UFA monitoring wells that tap a highly transmissive zone (43- to 53-m depth) in the UFA.  相似文献   

7.
A substantial cost of granular iron permeable reactive barriers is that of the granular iron itself. Cutting the iron with sand can reduce costs, but several performance issues arise. In particular, reaction rates are expected to decline as the percentage of iron in the blend is diminished. This might occur simply as a function of iron content, or mass transfer effects may play a role in a much less predictable fashion. Column experiments were conducted to investigate the performance consequences of mixing Connelly granular iron with sand using the reduction kinetics of trichloroethylene (TCE) to quantify the changes. Five mixing ratios (i.e., 100%, 85%, 75%, 50%, and 25% of iron by weight) were studied. The experimental data showed that there is a noticeable decrease in the reaction rate when the content of sand is 25% by weight (iron mass to pore volume ratio, Fe/Vp = 3548 g/L) or greater. An analysis of the reaction kinetics, using the Langmuir-Hinshelwood rate equation, indicated that mass transfer became an apparent cause of rate loss when the iron content fell below 50% by weight (Fe/Vp = 2223 g/L). Paradoxically, there were tentative indications that TCE removal rates were higher in a 15% sand + 85% iron mixture (Fe/Vp = 4416 g/L) than they were in 100% iron (Fe/Vp = 4577 g/L). This subtle improvement in performance might be due to an increase of iron surface available for contact with TCE, due to grain packing in the sand-iron mixture.  相似文献   

8.
A 5-year-old wood particle reactor treating agricultural tile drainage in southern Ontario was monitored for its ongoing ability to treat both nitrate (NO3) and perchlorate (ClO4). Prior to sampling undertaken in the fifth year of operation, a highway safety flare containing ClO4 was immersed in the inlet pipe elevating influent ClO4 concentrations to up to 33.7 μg/L. ClO4 removal rates were inhibited in the presence of more than 1 to 2 mg/L NO3-N, but increased rapidly to about 60 μg/L/d upon NO3 depletion. Nitrate removal rates, measured subsequently in the sixth and seventh years of operation, varied with temperature in the range of 2 to 16 mg N/L/d, but remained similar to rates measured in the second year. Additionally, no deterioration in the hydraulic conductivity (K) of the coarse core layer (0.5 3 removal rates and can remain highly permeable over a number of years. The media can also provide high removal rates for other redox sensitive contaminants such as ClO4. The ability to directly measure the reactor flow rate, in this case via an outlet pipe, greatly simplified the task of estimating hydraulic properties and reaction rates.  相似文献   

9.
An optimized analysis method based on headspace liquid phase microextraction (HS‐LPME) and gas chromatography coupled with mass spectrometry was proposed for the determination of trihalomethanes (THMs) in drinking water. The response surface method (RSM) was used to optimize the extraction of THMs for analysis by HS‐LPME. The temperature, extraction time and NaCl concentration were found to be important extraction parameters. The coefficient of determination (R2) for the model was 94.97%. A high probability value (P < 0.0001) for the regression indicated that the model had a high level of significance. The optimum conditions were seen to be: temperature 42.0°C, NaCl concentration 0.30 g/mL, and extraction time 28 min. The response variable was the summation of the THMs chromatography peak areas and the reproducibility of this was investigated in five replicate experiments under the optimized conditions. The relative standard deviations (RSD%) of the THMs ranged from 8.0–11.6%. The limits of detection (LODs), based on a signal‐to‐noise ratio (S/N) of three ranged from 0.42–0.78 μg/L, and were lower than the maximum limits for THMs in drinking water established by the WHO.  相似文献   

10.
The goal of this study was the cleanup of residual solvents in the saturated zone using an in situ biochemical treatment. Perchloroethylene (PCE) was chosen as a model compound because it is the most commonly found organic ground water contaminant. A mixture of vitamin B12 with titanium citrate was pumped as the remedial solution through a column containing 100 μL of PCE residual. The rate of reaction was found to be first order with respect 10 the concentration of PCE and to the concentration of vitamin B2. At 10 ppm B12, more than 85 percent PCM was degraded to trichloroelhylene (TCE) and dichloroelhylene (DCE) in two hours. The presence of low to moderate concentrations of organic carbon had no significant effect on the reaction. Vitamin B12 reduced by titanium citrate was found lo be compatible with the survival of anaerobic bacteria. The four major advantages of the biochemical system over the use of anaerobic bacteria are that (1) the rate is faster: (2) there is no need for the careful balance of nutrients or the addition of an extraneous carbon source: (3) there is no restriction in the concentration range of the compound to be treated; and (4) the remedial solution is mobile, even in the presence of organic carbon.  相似文献   

11.
Pilot-scale testing of an innovative ground water remediation technology was conducted in a source zone of a trichloroethene-contaminated Superfund site in Tucson, Arizona. The technology is designed to enhance the removal of low-solubility organic contaminants from heterogeneous sedimentary aquifers by using a dual-screened vertical circulation well to inject and extract solutions containing a complexing sugar (hydroxypropyl-beta-cyclodextrin (HPCD]). Prior to initiating the pilot test, tracer tests were conducted to determine hydraulic characteristics of the vertical flow field and to evaluate trichloroethene-elution behavior during water flushing. The pilot test involved injecting approximately 4 m3 of a 20% HPCD solution into the upper screened interval of the well and extracting from the lower screened interval. The results of the pilot test indicate that the cyclodextrin solution increased the rate of trichloroethene removal from the aquifer. The concentrations of trichloroethene in the ground water extracted from the lower screened interval of the well increased by a factor of three (∼750 μg/L) in the presence of the cyclodextrin pulse, compared to concentrations obtained during previous water flushing (∼250 μg/L). Furthermore, the concentration of trichloroethene in water collected from the circulation well under static conditions was reduced to 6% of the levels measured prior to the test.  相似文献   

12.
Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.  相似文献   

13.
A direct aqueous injection capillary gas chromatography/flame ionization (GC/FID) procedure for the analysis of petroleum-contaminated water was developed and applied to seven water samples saturated with different petroleum products. Separation of C1 to C4 alcohols, C6 to C9 monoaromatics, MTBE, phenol, aniline, and other compounds, and the detection of BTEX compounds at concentrations at or below their maximum contaminant levels (MCLs) is reported. Among the test compounds analyzed, the only pair found to coelute were 1-butanol and benzene. A method for confirmation of alcohols and polar compounds in the presence of dissolved petroleum hydrocarbons was also evaluated. In this case, water samples were analyzed before and after purging. Polar compounds were found to be significant components of the water soluble fractions of commercial petroleum products.  相似文献   

14.
The flow of ponded water into and through the unsaturated zone depends on both the saturated and unsaturated components of the hydraulic conductivity. Recent studies indicate that the ratio of the saturated (Kfs) to the unsaturated (φm) components (Kfsm=α*) of flow lies within prescribed bounds for most field soils, i.e., 1m−1≤α*≤ 100 m−1. In addition, the fact that the calculation of Kfs and φm is not strongly dependent on the choice of α*, suggests that a site estimation of α* leads to reasonable "best estimates" of Kfs and φm when using the constant head well permeameter technique. As a consequence, measurement of the steady flow rate using only one ponded head may be all that is necessary for many practical applications. Multiple head measurements or independent measurements of α* or φm can be used, however, to give more accurate estimates of Kfs if required.  相似文献   

15.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

16.
Field Demonstrations Using the Waterloo Ground Water Profiler   总被引:3,自引:0,他引:3  
Use of direct-push sampling tools fur rapid investigations of contaminated sites has proliferated in the past several years. A direct-push device, referred to as a ground water sampling profiler, was recently developed at the University of Waterloo. This tool differs from oilier direct-push tools in that point samples are collected at multiple depths in the same hole without retrieving, decontaminating, and re-driving the tool alter each sampling event. The collection of point samples, rather than samples from a longer screened interval, allows an exceptional level of detail to be generated about the vertical distribution of contamination from each hole. The benefits of acquiring this level of detail arc contingent on minimization of vertical cross contamination of samples caused by drag down from high concentration zones into underlying low concentration zones. In a detailed study of chlorinated solvent plumes in sandy aquifers, we found that drag down using the profiler is minimal or non-detectable even when the tool is driven through high concentration zones of dissolved chlorinated solvent contamination. Chlorinated solvent concentrations, primarily PCE and TCE at or below a detection limit of 1 μg/L, were obtained directly beneath plumes with maximum concentrations up to thousands of μg/L. Minimal drag down, on the order of a few μg/L to 20 μg/L, may have been observed below chlorinated solvent concentrations of several tens of thousands to hundreds of thousands of μg/L. Drag down through DNAPL zones was not evaluated.  相似文献   

17.
Azimuth-dependent AVO in reservoirs containing non-orthogonal fracture sets   总被引:1,自引:0,他引:1  
Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. The symmetry of a rock with horizontal bedding that contains two or more non-orthogonal sets of vertical fractures may be approximated as monoclinic with a horizontal plane of mirror symmetry. For offsets that are small compared with the depth of the reflector, the azimuthal variation in P-wave AVO gradient for such a medium varies with azimuth as     where φ is the azimuth measured with respect to the fast polarization direction for a vertically polarized shear wave. φ 2 depends on both the normal compliance B N and the shear compliance B T of the fractures and may differ from zero if B N B T varies significantly between fracture sets. If B N B T is the same for all fractures,     and the principal axes of the azimuthal variation in P-wave AVO for fixed offset are determined by the polarization directions of a vertically propagating shear wave. At larger offsets, terms in     and     are required to describe the azimuthal variation in AVO accurately. φ 4 and φ 6 also depend on B N B T. For gas-filled open fractures     but a lower value of B N B T may result from the presence of a fluid with non-zero bulk modulus.  相似文献   

18.
In 1988 and 1989, a natural gradient tracer test was performed in the shallow, aerobic and aquifer at Canadian Forces Base (CFB) Borden. A mixture of ground water containing dissolved oxygenated gasoline was injected below the water table along with chloride (Cl-) as a conservative tracer. The migration of BTEX, MTBE, and Cl was monitored in detail for 16 moths. The mass of BTEX compounds in the plume diminished significantly with time due to intrinsic aerobic biodegradation, while MTBE showed only a small decrease in mass over the 16-month period. In 1995/96, a comprehensive ground water sampling program was undertaken to define the mass of MTBE still present in the aquifer. Since the plume had migrated into an unmonitored section of the Borden Aquifer, numerical modeling and geostatistical methods were applied to define an optimal sampling grid and to improve the level of confidence in the results. A drive point profiling system was used to obtain ground water samples. Numerical modeling with no consideration of degradation pedicted maximum concentrations in excess of 3000 μg/L; field sampling found maximum concentrations of less than 200 μg/L. A mass balance for the remaining MTBE mass in the aquifer eight years after injection showed that only 3% of the original mass remained. Sorption, volatilization, a biotic degradation, and plant uptake are not considered significant attenuation processes for the field conditions. Therefore, we suggest that biodegradation may have played a major role in the attenuation of MTBE within the Borden Aquifer.  相似文献   

19.
Cancer risk analysis and assessment of trihalomethanes in drinking water   总被引:1,自引:2,他引:1  
This study conducts risk assessment for an array of health effects that may result from exposure to disinfection by-products (DBPs). An analysis of the relationship between exposure and health-related outcomes is conducted. The trihalomethanes (THMs) species have been verified as the principal DBPs in the drinking water disinfection process. The data used in this study was collected from the Taiwan Water Corporation (TWC) from 1998 to 2002. Statistical analysis, multistage of Benchmark model, Monte Carlo simulation (MCS) and sensitive analysis were used to estimate the cancer risk analysis and assessment. This study included the statistical data analysis, epidemiology investigation and cancer risk assessment of THMs species in drinking water in Taiwan. It is more significant to establish an assessment procedure for the decision making in policy of drinking water safety predominantly.  相似文献   

20.
Abstract Rocks from Karaginsky accretionary prism (Karaginsky Island, Bering Sea) yield both prefolding (close to original) and postfolding magnetic vectors. The prefolding vectors suggest that the Maastrichtian–Paleocene volcanic–terrigenous sequences of Karaginsky Island formed at approximately 40°N to 50°N ( n = 45, D G = 325, I G = 57, K G = 6, α95G = 8, F G = 15.06, D S = 332, I S = 63, K S = 20, α95S = 4.5, F S = 0.3297, F cr = 2.64) and were not originally part of either Eurasia ( F = 19, Δ F = 6.5) or North America ( F = 17, Δ F = 4.4). The geologic blocks rotated insignificantly counterclockwise about the horizontal plane, suggesting that the structure of Karaginsky Island arose without major strike-slip motions. Analysis of secondary magnetizations (for example, n = 28, D G = 311, I G = − 50, K G = 9, α95G = 8.7, F G = 2.44; D S = 293, I S = − 41, K S = 5, α95S = 11, F S = 12.04, F cr = 2.65) reveals that the development of this framework involved at least two stages of deformation. During the second stage the sequences must have been tilted to west-northwest and northwest directions at 45–65°. This agrees with the northwest vergence of the structure of Karaginsky Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号