首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
常规的岩体裂隙渗透性测试方法无法满足抽水蓄能电站工程设计的需要,为研究在高水头压力下岩体裂隙的透水特性,针对某抽水蓄能电站不同工程利用部位的岩体承载特性,进行了不同方法的高压压水测试,分别为变压力长时程高压压水、四循环高压压水、多阶段高压压水及逐级加压至岩体裂隙张开试验。这些试验方法的应用,不仅真实反映了该电站裂隙岩体在不同加压载荷下的渗透特性,而且可以评价岩体的各类结构面抵御水头压力的能力,为工程设计提供合理的依据。  相似文献   

2.
某水工隧洞裂隙岩体高水头作用下的渗透性试验研究   总被引:1,自引:0,他引:1  
结合某抽水蓄能电站高压引水隧洞裂隙岩体的高压压水试验、常规压水试验和室内试验,分析了裂隙岩体在高水头条件下渗透流量与压力关系所反映的岩体渗透特性变化规律;在定量计算基础上探讨了裂隙岩体渗透系数与压力的相互关系。通过对比高压压水试验、常规压水试验和室内试验得到的渗透系数,分析了环境应力状态和压力变化对渗透系数取值影响的原因。研究结果表明,高水头作用下裂隙岩体的渗透系数明显大于低水压条件下的渗透系数,室内试验渗透系数因应力解除影响而大于原位压水试验渗透系数值。  相似文献   

3.
为了解高压水渗流作用对裂隙岩体应力和变形的影响,结合黑麋峰抽水蓄能电站岩体高压压水试验的渗压及变形测试成果,采用多孔连续介质全耦合理论,研究了试验区岩体测点在压水孔加压和卸压过程中的孔隙压力和位移变化过程。通过对测点位移和渗压随时间变化过程的计算值和实测值对比研究,验证了所采用的水-岩耦合数值模型的合理性。研究表明:在压水孔内的水压力和岩体孔隙压力的共同作用下,岩体内的应力大幅度增加;压水过程中,岩体因渗流作用产生了较大的位移,停止压水后的一段时间内,由于岩体中还存在一定的孔隙水压力和水压力梯度,从而导致岩体内仍存在部分变形值,且该部分变形值并非是压水孔卸载后岩体内的塑性残余变形;高压水渗流作用下的岩体耦合效应对工程应力和围岩变形有重大影响,考虑水-岩耦合效应的岩体稳定性评价结果对工程设计更具指导意义  相似文献   

4.
渗透系数是表征裂隙岩体透水性能的一个重要参数,当水压力较小时,岩体的渗透系数变化不明显,但在高水压力条件下,岩体的渗透系数会发生明显变化,这给我们在进行渗流分析时带来了一定的困难,因为多数情况下是将渗透系数当作定值来计算的。在高压水条件下,基于非达西流方程,推导了裂隙岩体的渗透系数与水压力之间的表达式,并给出了常规压水或低水压力、高压压水时水力劈裂前后渗透系数的计算公式。现场压水试验结果表明,当岩体发生水力劈裂后,渗透系数增加明显,此时可以通过压水量和水压力的变化量来计算裂隙岩体的渗透系数。通过几个抽水蓄能电站的高压压水试验结果验证了裂隙岩体水力劈裂前后渗透系数的变化规律,并与实际裂隙岩体的渗透系数进行了比较,其误差在10%左右,表明本文给出的渗透系数表达式的合理性和准确性,为水利水电工程的渗流分析及渗漏量的计算提供了渗透系数选择的依据。  相似文献   

5.
水压式双栓塞止水压水技术的研究与实践   总被引:2,自引:0,他引:2  
国内工程钻孔压水多结合造孔采用单栓塞止水,按0.3、0.6和1.0MPa3个压力点5个压力阶段进行试验,我们称其为常规压水试验。目前,进行勘测设计和施工的高坝高水头电站、抽水蓄能电站已有多座,查明岩体在实际水头作用下的透水率和渗透特性是工程设计的一项重要工作。因为一些低压力下不渗透的岩层在高压下可能渗透甚至会产生水力劈裂,常规压水试验结果已不能完全满足工程设计的需要。为此,我们研制了水压式双栓塞止水压水技术。实践证明,该技术具有止水效果好、操作简单、可在终孔后连续进行试验等优点。本文给出了使用该技术进行的常规压水、高压压水和水力劈裂三个方面的试验资料,简单分析了这些试验资料在工程设计中的作用和意义。  相似文献   

6.
在水利水电等地下工程的常规压水试验中,一般以1Lu(吕荣值)作为防渗灌浆结束的标准。近年来,随着科学技术水平的不断提高,我国的高水头抽水蓄能电站得到了迅速发展,也进行了相应的高压压水试验。对于高水头的水电工程,现场高压压水试验结果和常规压水试验结果对比发现,对于同一试验段,高压压水试验计算的岩体透水率反而比常规压水试验计算的透水率小,由此计算的岩体渗透系数也偏小,但在高压水作用下岩体渗透性会不同程度地增加。如果岩体透水率还用《水利水电工程钻孔压水试验规程》(SL31-2003)中的公式计算,则由于压力的增加计算的Lu变小,防渗的标准会相应提高。针对规范中岩体透水率的适用性问题,提出了基于高压压水试验的高压单位吸水量的概念,即在直径75mm、试段长度约5m的孔内高压压水试验中,围岩在设计水头(2MPa)作用下,单位长度上的压入流量,用DK表示,单位为Lmin-1m-1。基于这一概念,应用数值模型计算了岩体试段的压入量,通过与某抽水蓄能电站高压压水试验的实际岩体试段的压入量进行的对比,获得了最大压力为4MPa时,岩体注浆结束标准为2DK(0.5Lu)。因此,对于不同的高水头水电工程,隧洞注浆结束标准(高压单位吸水量)要根据设计水头进行调整,而不能以常水头那样始终以1Lu作为防渗结束标准。  相似文献   

7.
高压压水试验在深钻孔中的应用   总被引:3,自引:0,他引:3  
殷黎明  杨春和  罗超文  王贵宾 《岩土力学》2005,26(10):1692-1694
常规压水试验一般按三级压力、五个阶段进行。三级压力一般分别为0.3,0.6,1 MPa。但对于水库大坝、深埋地下工程等水头很高的工程而言,常规压水试验结果不能反映实际水头压力作用下岩体的渗透特性。试验在某花岗岩地区500 m深孔中进行,因此选定压力阶段为2,4,6 MPa。试验段长度取为6.5 m,钻孔中共取21个典型区段进行高压压水试验,试验结果表明,高压压水试验能很好地反映岩体透水性的变化规律。该地区属低渗透岩体,因此在该地下工程灌浆处理裂隙岩体时最小灌浆压力值应不小于5 MPa。  相似文献   

8.
本文提出了一种既能反映裂隙岩体的渗透特性,又相对准确的确定裂隙岩体渗透张量的方法。首先通过裂隙在空间展布状况的测量,用统计学方法初步确定裂隙岩体的渗透张量,获得渗透主值及主方向,然后根据野外压水试验得到的岩体透水率,利用巴布什金公式计算各试段岩体的渗透系数,求出修正系数,从而得到研究区裂隙岩体的修正渗透张量。并运用上述方法对蒲石河抽水蓄能电站上水库坝址区裂隙岩体的渗透张量进行了计算。结果表明,该方法能较好地刻画裂隙岩体渗透性的各向异性特征,可为岩体渗透性分区及防渗帷幕的优化提供科学依据。  相似文献   

9.
《地下水》2021,(3)
在水文地质参数求取中,不同的试验方法有其一定的适应性,以广州市某一垃圾填埋场研究区,对抽水试验、压水试验、注水试验三种水文地质试验方法的适应性进行试验分析,结论是抽水试验适合渗透系数大、水量丰富的情况;压水试验适用于岩体完整,裂隙不发育,水量比较小,渗透系数小的情况;注水试验适用于地下水位埋藏很深,岩体完整,裂隙发育,渗透系数小的情况。  相似文献   

10.
高压压水试验在某抽水蓄能电站中的应用   总被引:1,自引:0,他引:1  
简述了高压压水试验方法及其在某抽水蓄能电站中的应用结果,并结合该孔中的水压致裂法地应力试验测试结果进行了分析,高压压水试验的成果与该孔水压致裂法地应力测试结果得到了相互验证。  相似文献   

11.
根据蒲石河抽水蓄能电站上库的地质及水文地质条件,建立了裂隙岩体三维渗流数值模拟模型,计算分析了水库-岩体系统地下水运动规律及各种运行工况下的上库渗漏量和渗流场的分布特征。将模拟计算区地下水流系统概化为非均质各向异性三维稳定地下水流系统,综合利用压水试验得到的平均渗透系数值和统计学方法得到的渗透张量方向,获得裂隙岩体的渗透系数张量。数值模拟结果表明,正常蓄水位运行工况下,整个库区均未进行防渗处理时,上库总渗漏量为5832.92m3/d,防渗后渗漏量减少了3571.27m3/d。  相似文献   

12.
丁立丰  郭啟良  王成虎 《岩土力学》2009,30(9):2599-2604
现代水电、交通、矿山、能源及核废料处理等地下工程中,洞室岩体原地承载能力以及在工程运行状态下洞室围岩的实际透水性状等岩体力学参数,是地质勘测不可缺少的基础资料,也是科学地优化工程设计的依据。由于传统的裂隙渗透性测试技术与方法如常规压水试验已不能满足工程建设发展的需要,达不到有些复杂工程对岩体渗透性的特殊设计要求,因此,有必要进行多种形式的工程岩体裂隙渗透特性分析和研究,从而针对特定工程,选择合适的试验方法,探明其确切渗透规律,以保证工程设计的准确性和有效性。  相似文献   

13.
《岩土力学》2017,(10):2939-2948
以不同加载方式下裂隙岩体中弹性波传播特性试验为基础,首先通过对比试验中弹性波波速、波幅与岩体宏观损伤的关系,给出了采用弹性波波幅来表征的裂隙岩体宏观损伤变量;其次利用统计强度理论定义了岩石的细观损伤变量,并基于连续损伤理论建立了宏、细观裂隙耦合的裂隙岩体损伤本构模型;最后结合试验数据对该模型进行了验证与分析。研究表明:完整岩体中细观裂隙的起裂和扩展对岩体中传播弹性波的波幅和波速的影响较小,而裂隙岩体中宏观裂隙的张开和闭合对弹性波波幅和波速的影响较大。裂隙岩体在外力作用下时,弹性波波速和波幅的变化规律类似,相较于弹性波波速,弹性波波幅对裂隙岩体宏观损伤的变化表现的更敏感,可用来定义裂隙岩体的宏观损伤变量。不同加载方式下裂隙岩体的损伤特性与宏、细观裂隙以及其所处的应力状态相关,基于宏、细观裂隙耦合的裂隙岩体损伤本构模型可以较好地反映不同加载方式下裂隙岩体的损伤力学特性。在三轴压缩试验中,宏观裂隙对岩体轴向压应力方向上损伤的影响主要体现在试验的中后期阶段,在三轴拉压试验中,宏观裂隙对岩体轴向拉应力方向上损伤的影响贯穿于试验全过程中。  相似文献   

14.
水压致裂技术作为原地应力测量普遍采用的一种方法,近年来得到了长足发展。原本该方法只能进行水平主应力的测量,现已发展为广泛应用的三维原地应力测量方法。尤其是在诸如抽水蓄能电站的高压输水隧洞、气垫调压室等承压洞室工程中,在工程利用深度域的各种岩性结构层段上,采用水压致裂技术进行梯级增压测试,便可给出围岩自身承载能力的评价结果,由此为工程的科学设计提供可靠的依据。同时,由于岩体透水性是工程地质不可或缺的一项勘测内容,而低压下不透水的岩层在高压力作用下往往漏水,因此采用水压致裂技术进行高压压水测试,就可以给出工程运行条件下岩体透水性的可靠测试结果。本文仅就水压致裂测试技术的主要发展及其应用做一简介。  相似文献   

15.
季备  梁杏 《地下水》2009,31(2):5-7
依据单孔压水试验,分析了木里河流域某水电站坝址区基岩裂隙网络系统渗透特性,得到了坝址区不同岩性岩体中不同成因类型的裂隙渗透特性随埋深的变化规律,并为以后构建基岩裂隙介质等效连续介质数值模型时的参数选取提供依据。  相似文献   

16.
有效评价岩体的原地承载能力,对于水电工程设计和安全运行是非常重要的。结合现场实测资料对岩体的原地承载能力评价方法进行了分析研究,提出了具有明确物理意义的评价岩体在长期高水头作用下原地承载能力试验方法,对水力劈裂和单压力点压水试验的原理、方法进行了论述。从理论上讨论了岩体原地承载能力与地应力、孔隙压力的关系,探讨了岩体原地承载能力的时间效应及其影响。依据裂隙面正应力和孔隙压力的影响,给出了岩体的原地承载能力取值范围。  相似文献   

17.
钻孔高压压水测试在深埋与承压洞室工程中的应用研究   总被引:2,自引:0,他引:2  
随着工程建设的发展,最高压力为1.0 MPa的常规压水测试,已不能满足具有压力洞室工程的勘测需要。只有按照洞壁围岩实际承受的压力进行高压压水测试,才能为确定岩体的高压透水性状、洞壁围岩的临界破裂压力、岩体透水性随时间的变化特征,以及岩体高压作用下的变形与工程稳定性分析等提供可靠依据。  相似文献   

18.
付宏渊  蒋煌斌  邱祥  姬云鹏 《岩土力学》2020,41(12):3840-3850
为探究不同外部环境因素影响下浅层粉砂质泥岩边坡裂隙渗流特性,采用自主研发的岩体裂隙渗流试验装置,对含6种不同裂隙面粗糙度(JRC)的粉砂质泥岩裂隙试样进行渗流试验,研究了不同低围压和覆水深度下粉砂质泥岩裂隙渗流特性。结果表明:不同覆水深度及JRC下围压与粉砂质泥岩裂隙渗透系数均呈反相关,两者之间关系可用幂函数表征,且渗透系数的降低过程可分为快速降低(围压为0~30 kPa)和缓慢降低(围压为30~50 kPa)两个阶段,CT扫描结果验证了围压增大使得粉砂质泥岩裂隙开度减小是渗透系数随围压增大而减小的主要原因。随围压的增大或覆水深度的减小,不同JRC粉砂质泥岩裂隙渗透系数的离散程度逐渐减小。当围压增至最大,同时覆水深度最小时,JRC对裂隙渗透系数的影响将会被消除。不同围压下,粉砂质泥岩裂隙渗透系数与覆水深度呈正相关,且两者关系可用指数函数表征。推导出了粉砂质泥岩裂隙渗流非线性Izabsh模型,该模型能较好地反映低应力及低流速下粉砂质泥岩裂隙渗流量与压力梯度之间的非线性变化关系,但随围压的增大,该模型的相关性有一定程度的减小。  相似文献   

19.
作用在岩体裂隙网络中的渗透力分析   总被引:8,自引:2,他引:8  
从岩体裂隙网络渗流的特点出发, 以单裂隙渗透力分析为基础, 分析了二维及三维情况下岩体裂隙网络渗流对岩体裂隙壁施加的两种作用力: 垂直于裂隙壁使裂隙产生扩容的法向渗透静水压力以及平行于裂隙壁和裂隙水流方向一致的切向动水压力, 推导出二维及三维情况下裂隙单元因这两种作用力而产生的等效结点力, 并应用算例定量分析了岩体裂隙网络渗透静水压力和动水压力共同作用对岩体应力的影响, 结果显示: (a)渗透力作用下裂隙上部岩体压应力减小, 而裂隙下部岩体压应力增大, 最大压应力增大 10 .5 3%; (b)渗透力作用下裂隙岩体拉应力增大, 最大拉应力增大 9.0 9%; (c)裂隙渗透力使岩体剪应力增大, 最大值达 2 3.75 %。  相似文献   

20.
压水试验是工程中进行岩体渗透性评价采用的主要手段。文章从压水试验的基本方法、原理入手,并结合水文观测资料,分析了高压力压水试验成果在蒙自五里冲水库帷幕检查孔中的运用情况,这对弥补我国长期延用的小压力多点试验法压水的不足,提供了较为可靠的实践经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号