首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of the Dead Sea lowers 1 m/year and this rate is in acceleration. The decline is causing one of the major environmental disasters of the twenty-first century. The freshwater resources management policy of Israel, Jordan, and Palestine controls the phenomenon. Since the 1960s, the level of this terminal lake dropped by 28 m and its surface shrunk by one-third. In the 1990s, international builders created major tourist resorts and industrial plants along the Jordanian shore while, during the same period, geological hazards triggered by the level lowering spread out. From the very beginning of the year 2000, sinkholes, subsidence, landslides, and river erosion damaged infrastructures more and more frequently: dikes, bridges, roads, houses, factories, pipes, crops, etc. Until present, scientific articles about this ongoing disaster concerned only sinkholes and subsidence phenomena. This paper focuses on the landslides issue along the Jordanian coast. Based on a set of ground observations collected since 1999, the dynamics of the triggering factors in relation to the evolution of the hydro-geological setting is discussed. It is inferred that the recent industrial and tourist infrastructures never took into consideration the very important geotechnical constraints resulting from the Dead Sea lowering.  相似文献   

2.
Water is scarce in the semi-arid to arid regions around the Dead Sea, where water supply mostly relies on restricted groundwater resources. Due to increasing population in this region, the regional aquifer system is exposed to additional stress. This results in the continuous decrease in water level of the adjacent Dead Sea. The interaction of an increasing demand for water due to population growth and the decrease of groundwater resources will intensify in the near future. Thus, the water supply situation could worsen significantly unless sustainable water resource management is conducted. In this study, we develop a regional groundwater flow model of the eastern and southern Judea Group Aquifer to investigate the groundwater regime in the western Dead Sea drainage basin of Israel and the West Bank. An extensive geological database was developed and consequently a high-resolution structural model was derived. This structural model was the basis for various groundwater flow scenarios. The objective was to capture the spatial heterogeneity of the aquifer system and to apply these results to the southern part of the study area, which has not been studied in detail until now. As a result we analyzed quantitatively the flow regime, the groundwater mass balance and the hydraulic characteristics (hydraulic conductivity and hydraulic head) of the cretaceous aquifer system and calibrated them with PEST. The calibrated groundwater flow model can be used for integrated groundwater water management purposes in the Dead Sea area, especially within the framework of the SUMAR-Project.  相似文献   

3.
The Lisan Peninsula, Jordan, is a massive salt layer accumulated in the inner part of the Dead Sea’s precursory lakes. This tongue-shaped, emergent land results in a salt diapir uplifted in the Dead Sea strike-slip regional stress field and modified by the water level fluctuations of the last lake during the Holocene. These two elements, associated with dissolution caused by rainfall and groundwater circulation, resulted in an authentic karst system. Since the 1960s, the Dead Sea lowering of 80 cm to 1 m per year caused costly damages to the industrial plant set up on the peninsula. The Lisan karst system is described in this article and the components of the present dynamic setting clarified.  相似文献   

4.
The Dead Sea is worldwide a major bromine provider for industry with an average concentration of 5.2 g/l of bromide compared to 0.065 mg/l in seawater and with a Cl/Br weight ratio in the Dead Sea water of about 42 compared to around 300 in oceanic water. The origin of the high bromide concentration in the Dead Sea has not yet been adequately clarified. In the course of this study, the bromide concentrations in the different surface and groundwater bodies in Jordan were analyzed and the types of rocks with which these waters were in contact were identified. Analyses carried out up to about 30 years ago and recent analyses confirm the natural origin of bromide in the water and also confirm that the analyzed sources are not polluted by anthropogenic bromide sources. It was found that a variety of these surface and groundwater sources contain high concentrations of bromide which discharges into the Dead Sea and contribute to its high bromide concentration. The present study concludes that the late Cretaceous early Tertiary oil shale deposits form the major source of the bromine species in the surface and groundwater feeding the Dead Sea. Some bromide is also contributed by the Triassic and Jurassic rocks containing evaporate salts containing bromides. Phosphate rocks of late Upper Cretaceous age contribute also with appreciable amounts of bromine species to the different water sources and hence to the Dead Sea water. At present, dissolution and erosion of bromide-rich sediments laid down by the predecessor water bodies of the present Dead Sea such as the Lisan Lake are being transported into the Dead Sea and contribute relatively large amounts of secondary bromide to the Dead Sea water.  相似文献   

5.
The alluvial aquifer is the primary source of groundwater along the eastern Dead Sea shoreline, Jordan. Over the last 20 years, salinity has risen in some existing wells and several new wells have encountered brackish water in areas thought to contain fresh water. A good linear correlation exists between the water resistivity and the chloride concentration of groundwater and shows that the salinity is the most important factor controlling resistivity. Two-dimensional electrical tomography (ET) integrated with geoelectrical soundings were employed to delineate different water-bearing formations and the configuration of the interface between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 410 m b.s.l. Resistivity measurements show a dominant trend of decreasing resistivity (thus increasing salinity) with depth and westward towards the Dead Sea. Accordingly, three zones with different resistivity values were detected, corresponding to three different water-bearing formations: (1) strata saturated with fresh to slightly brackish groundwater; (2) a transition zone of brine mixed with fresh to brackish groundwater; (3) a water-bearing formation containing Dead Sea brine. In addition, a low resistivity unit containing brine was detected above the 1955 Dead Sea base level, which was interpreted as having remained unflushed by infiltrating rain.  相似文献   

6.
 Sinkhole development along the western shore of the Dead Sea became a major concern in 1990 with the appearance of a series of holes 2–15 m diameter and up to 7 m deep in the Newe Zohar area. One of these sinkholes, below the asphalt surface of the main road along the western shore of the Dead Sea, was opened by a passing bus. Repeated infilling and collapse of these holes indicated the extent of this ongoing process and the significance of this developing hazard. Since then sinkholes have developed in other areas including Qalia, Ein Samar, Ein Gedi and Mineral Beach. Three main types of sinkholes have been recognized. Gravel holes occurring in alluvial fans, mud holes occurring in the intervening bays of clay deposits between fans and a combination of both types at the front of young alluvial fans where they overlap mud flats. Fossil, relict sinkholes have been observed in the channels of some old alluvial fans. Sinkhole development is directly related to the regression of the Dead Sea and the corresponding lowering of the regional water table. Continuation of this process widens the neritic zone enveloping the sea and increases the sinkhole hazard of the region. Received: 4 February 1999 · Accepted: 8 April 1999  相似文献   

7.
This paper deals with the hydrogeological relationship between base levels of saline lakes and the formation of sub-horizontal caves. The mechanism presented here suggests that many horizontal cave levels in carbonate sequences are created adjacent to the saline lakes shorelines because of the converging of the groundwater flow above the fresh–saline water interface. The main factors that control enhanced carbonate dissolution and cave formation are high groundwater flow velocities in the shallow phreatic zone during a relative long steady state of the water table. High groundwater flow velocities are evident close to the Dead Sea due to the convergent fast flows above the shallow interface adjacent to the shoreline. The same could prevail in the case of previous paleo-lakes that existed in the basin. The synergetic combination of the above preconditions for enhanced cave formation seems to be responsible for the formation of elevation-controlled alignment of paleo-near shore cave levels in the central and southern (Dead Sea) portion of the study area. These are found on the western fault escarpment and basin margin in different stratigraphic horizons of carbonate lithology. Many of the cave levels can be linked to late Quaternary–Holocene lake levels obtained from dated lake sediments within the basin. The most common cave’s elevation was found to be around 200 m below sea level which was the elevation of the Lisan Lake during part of its history. On the other hand, the Hula Basin in the northern part of the Dead Sea Basin was not occupied by saline water bodies since its formation as a base level, and thus the above preconditions for enhanced cave formation did not prevail. Indeed, this is evident by the lack of horizontal cave levels on its western carbonate margins unlike the situation in the south.  相似文献   

8.
For the last four decades, the level of the Dead Sea has been subjected to continual variation which, among other important factors, has led to the occurrence of much subsidence and many sinkholes in the southern Dead Sea area. Sinkhole activities occurred repetitively and were observed in open farms, across roads, near dwellings and near an existing factory, thus causing a serious threat to the locals and farmers of the area and their properties. This paper presents the main results from detailed geological and geotechnical studies of this area. Aerial photo interpretation and borehole drilling aided these studies. Parallel geophysical investigations (vertical electrical sounding and seismic refraction) and hydrological and hydrogeological studies were made by others in the same area to also investigate this phenomenon. It was found that sinkholes are aligned to and follow old water channels and are concentrated parallel to the recent shoreline of the Dead Sea. The development of subsurface cavities is associated mainly with the variation in the level of the Dead Sea over the four past decades, the presence of regional salt intrusion under the surface of salt beds, the fluctuation of the water table and continuous dissolution and the active tectonism of the area. Moreover, this work showed that the area is still under active sinkhole hazards and other parts of the area will be inevitably affected by sinkholes in the future.No practical engineering solution to this problem is feasible. Received: 1 July 1999 / Accepted: 11 October 1999  相似文献   

9.
废弃矿山引起的环境地质灾害   总被引:16,自引:1,他引:15  
系统分析了国内外废弃矿山引起的地下水污染、地表水污染、地表塌陷及诱发邻近矿井突水等环境地质灾害特点,论述了废弃矿山与环境地质灾害之间存在的互馈链关系及废弃矿山因地下水位回弹所诱发环境地质灾害的机理,提出了研究和治理废弃矿山环境地质灾害的监测、监控及综合治理的技术思路。   相似文献   

10.
焦玉国 《山东地质》2014,(12):59-62
通过对泰安市城区地质环境条件的深入分析,系统阐述了泰安市城市地下空间开发与地质环境因素之间的相互影响关系,一方面城市地下空间开发受到地表水、地下水水位、水质及岩溶塌陷地质灾害等地质环境因素的制约,而地下空间开发建设又反过来影响和改变着城区地下水环境、土壤环境,并有可能提高城区岩溶塌陷发生的机率,因此建议有关部门在规划建设城市地下空间的同时要加强地质环境保护。  相似文献   

11.
Remote sensing (RS) and geographic information systems (GIS) are very useful for environmental-related studies, particularly in the field of surface water studies such as monitoring of lakes. The Dead Sea is exposed to very high evaporating process with considerable scarcity of water sources, thus leading to a remarkable shrinkage in its water surface area. The lake suffers from dry out due to the negative balance of water cycle during the previous four decades. This paper discusses the application of RS, GIS, and Global Positioning System to estimate the lowering and the shrinkage of Dead Sea water surface over the period 1810–2005. A set of multi-temporal remote sensing images were collected and processed to show the lakes aerial extend shrinkage from 1973 up to 2004. Remote sensing data were used to extract spatial information and to compute the surface areas for Dead Sea for various years. The current study aims at estimating the fluctuation of Dead Sea level over the study period with special emphasis on the environmental impact assessment that includes the degradation level of the Dead Sea. The results indicated that there is a decrease of 20 m in the level of the Dead Sea that has occurred during the study period. Further, the results showed that the water surface area of the Dead Sea has shrunk from 934.26 km2 in 1973 to 640.62 km2 in 2004.  相似文献   

12.
For many years, the Dead Sea suffers from an annual inflow deficiency of about one billion cubic meters, flood and baseflow. The water level changes are related to the majority of surface water inflows diverted for irrigation purposes, in addition to intensive loss of water by the high rate of evaporation and industrial water use. This causes the Dead Sea water level to decline about 35 m within the last 50 years for a long-term average of about 0.79 m per year. The changes in the hydrochemical composition were simulated experimentally to determine the changes that take place as a function of brine water evaporation level and its density. The Total Dissolved Solids (TDS) and the density of the Dead Sea water varies as a function of its water evaporation level changes. It was found that the density variation is not following a linear function with respect to water volume changes. But it follows the total amount of precipitate that occurred at different water levels. The electrical conductivity (EC) changes with respect to time and the prevailing temperature. There was no formula to calculate the high salinity of brine water above the normal ocean water. Consequently, the EC measurements were adopted to represent the Dead Sea water salinity. But in this research a converging factor (0.80971) has been found to convert the TDS values into salinity values. On contrary, the pH values revealed an inverse relationship with respect to the evaporation levels.  相似文献   

13.
The Dead Sea shore is affected by major subsidence and sinkholes hazards due to the decrease of the sea level. The frequency of resulting accidents increased during the last four decades. Those phenomena could be at the origin of the catastrophic destruction of a major salt evaporation pond on 22 March 2000. In this paper, we show the main results of eight years of research in gravimetry and radar interferometry devoted to identify potentially hazardous areas, at different scales along the Jordanian Dead Sea coast, from the metric scale (gravimetric approach) to the kilometric one (interferometric approach). To cite this article: D. Closson et al., C. R. Geoscience 335 (2003).  相似文献   

14.
河北省沧州市地质灾害与地下水关系研究   总被引:1,自引:0,他引:1  
文章主要对沧州市的地面沉降、地裂缝等地质灾害的发育特征进行了分析研究,论述了其与地下水的关系。得出深昙地下水水位降深70m可作专控制地面沉降发展的警戒水位降深,浅层地下水水位埋深7m可作为地裂缝多发的警戒水位埋深的结论。这专地质灾害监测工作相对滞后,而地下水水位监测系统相对完善的平原地区,如何控制地质灾害的发生、发展提供了一个可资借鉴的思路。  相似文献   

15.
查明地表水和地下水作用关系对湿地生态保护与修复具有重要意义。采用地表水和地下水位监测、氢氧稳定同位素分析、湖床沉积物温度示踪等方法,研究了白洋淀渗漏对周边浅层地下水的影响范围和深度,评价了地表水垂向渗漏速率,并探讨了芦苇分布面积和地表水位以及地下水位埋深的关系。结果表明:白洋淀渗漏受地质结构和水力梯度等因素影响,对浅层地下水垂向上影响深度为20 m,水平向上影响范围存在较大空间变异。周边浅层地下水的补给来源为大气降雨和地表水,其中地表水渗漏的补给比例为0~90.5%。淀区渗漏速率0.01~0.59 mm/d,和含水层埋深关系密切,埋深越小,越有利于地表水渗漏。1976-2020年,白洋淀芦苇分布面积和地表水位关系密切。当地表水位为6.3~6.8 m时,芦苇分布面积最大,在水位小于6.3 m条件下芦苇面积随着水位增高而增加,大于6.8 m条件下随着水位增高而减少。芦苇台地下水位埋深和地表水位显著相关,在2020年4-9月芦苇生长期,除雨季前期外多数时段台地地下水埋深均适宜芦苇发育,建议在雨季前期实施生态补水,通过降低台地地下水位埋深促进芦苇生长发育。研究结果可为白洋淀生态补水、渗漏防治和生态保护提供参考。  相似文献   

16.
The semi-arid region of the Dead Sea heavily relies on groundwater resources. This dependence is exacerbated by both population growth and agricultural activities and demands a sustainable groundwater management. Yet, information on groundwater discharge as one main component for a sustainable management varies significantly in this area. Moreover, discharge locations, volume and temporal variability are still only partly known. A multi-temporal thermal satellite approach is applied to localise and semi-quantitatively assess groundwater discharge along the entire coastline. The authors use 100 Landsat ETM + band 6.2 data, spanning the years between 2000 and 2011. In the first instance, raw data are transformed to sea surface temperature (SST). To account for groundwater intermittency and to provide a seasonally independent data set ?T (maximum SST range) per-pixel within biennial periods is calculated subsequently. Groundwater affected areas (GAA) are characterised by ?T < 8.5 °C. Unaffected areas exhibit values >10 °C. This allows the exact identification of 37 discharge locations (clusters) along the entire Dead Sea coast, which spatially correspond to available in situ discharge observations. Tracking the GAA extents as a direct indicator of groundwater discharge volume over time reveals (1) a temporal variability correspondence between GAA extents and recharge amounts, (2) the reported rigid ratios of discharge volumes between different spring areas not to be valid for all years considering the total discharge, (3) a certain variability in discharge locations as a consequence of the Dead Sea level drop, and finally (4) the assumed flushing effect of old Dead Sea brines from the sedimentary body to have occurred at least during the two series of 2000–2001 and 2010–2011.  相似文献   

17.
Groundwater is as an important geological agent. Moving groundwater may change the geological environment and cause geological hazards. Therefore, the interaction between groundwater and geo-environment has attracted increasing attention of hydrogeologists, geotechnical engineers and environmental geologists. In general, three main types of interaction between groundwater and the geological environment are identified in this paper, with several special processes for each one. These types include physical interaction, with processes of lubrication, softening or weakening and strengthening of bound water, chemical interaction with processes of ion exchange, dissolution, hydration, hydrolysis, corrosion and oxidation-reduction, and mechanical interaction with processes of hydrostatic pressure and hydrodynamic pressure. The interactions between groundwater and the geological environment can affect the deformability and strength of rock or soil masses. The geological process, engineering activity and heat can change the geo-stress field, recharge, throughflow and discharge conditions of groundwater. The consequence of interactions between groundwater flow and geo-stress changes the geological environment. Meanwhile, the interaction processes can induce geological hazards, such as reservoir-induced earthquakes, landslides, flooding of mines, ground engineering hazards, instability of dams, the collapse of cavities in carbonate and evaporate rocks, land subsidence and earthquakes.  相似文献   

18.
通过对松嫩平原地下水超采形势分析,掌握地下水资源的补给及开发利用状况、地下水位下降趋势情况,为监测、监督地下水的过量开采与污染、保护、合理利用地下水资源,促进地下水可持续利用提供基础数据与决策依据。依据近10年地下水水位、水质监测数据,采用超采系数法、地下水位下降速率法,结合地下水资源均衡和地下水水质污染情况,通过数值模拟、数理统计、条件类比、地质分析等方法,综合分析确定地下水超采形势。  相似文献   

19.
鞍山市铁矿矿山地质灾害形成条件及对策研究   总被引:4,自引:2,他引:4  
矿山地质灾害较其它地质灾害相比有其独特性。在鞍山铁矿区,排土场沉降不仅与采矿引起的地下水位下降有直接的联系,还与松散细粒土层、活动断裂有关;滑坡、泥石流地质灾害与地形地貌、水源条件及构造有一定的关系,更重要的是采矿活动产生的废石废渣为其提供了大量的物源;尾矿库灾害主要表现为:洪水漫顶、尾矿砂液化破坏、尾矿坝渗漏及管涌溃堤、尾矿坝滑塌破坏等。本文简要分析了鞍山市铁矿山主要存在的地质灾害类型(排土场地面沉降、滑坡、泥石流及尾矿库地质灾害)和形成条件并提出了防治地质灾害的对策。  相似文献   

20.
陶虹  丁佳 《地质论评》2014,60(1):231-235
关中城市群地下水自集中开采以来区域地下水位呈整体下降趋势,主要城市集中供水水源地水位降幅30~50 m,最大超过120 m。长期过量开采地下水引起了地下水位持续下降、地面沉降、地裂缝以及水质污染等环境地质问题。近年随着城市群限制开采量,地下水水位下降及其相关环境地质问题在局部地段有所缓和。本文以50年地下水动态监测数据为基础,针对关中城市群地下水动态特征及相关的环境地质问题进行研究分析,并对预防和缓解环境地质问题、合理开发地下水资源提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号