首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularization, synchronization and orbital decay by exchange of angular moment. Evidence for tidal circularization in close-in giant planet is well known. Here, we review the evidence for excess rotation of the parent stars due to the pull of tidal forces towards spin-orbit synchronization. We find suggestive empirical evidence for such a process in the present sample of transiting planetary systems. The corresponding angular momentum exchange would imply that some planets have spiralled towards their star by substantial amounts since the dissipation of the protoplanetary disc. We suggest that this could quantitatively account for the observed mass–period relation of close-in gas giants. We discuss how this scenario can be further tested and point out some consequences for theoretical studies of tidal interactions and for the detection and confirmation of transiting planets from radial velocity and photometric surveys.  相似文献   

2.
The OGLE survey for transiting planets has identified 177 transit candidates. Subsequent radial velocity follow-up of these candidates has allowed the detection of five transiting planets, as well as several dozen eclipsing binaries.Some of these systems consist of solar-type stars transited by small M dwarf companion, including the smallest stellar companions yet measured by transit. As a result, the OGLE transit survey has yielded a wealth of data on the mass-radius relation of planets and low-mass stars. In particular, two planet-sized stars were found, an empirical proof of the model predictions on Jupiter-sized main-sequence stars.  相似文献   

3.
We investigate the evaporation history of known transiting exoplanets in order to consider the origin of observed correlations between mass, surface gravity and orbital period. We show that the survival of the known planets at their current separations is consistent with a simple model of evaporation, but that many of the same planets would not have survived closer to their host stars. These putative closer-in systems represent a lost population that could account for the observed correlations. We conclude that the relation underlying the correlations noted by Mazeh et al. and Southworth et al. is most likely a linear cut-off in the   M 2/ R 3  versus   a −2  plane, and we show that the distribution of exoplanets in this plane is in close agreement with the evaporation model.  相似文献   

4.
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in   P ∼  10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is  11.91 ± 0.05  d, and the false alarm probability for this period is extremely low  (∼10−13)  .  相似文献   

5.
Of the known transiting extrasolar planets, a few have been detected through photometric follow-up observations of radial velocity planets. Perhaps the best known of these is the transiting exoplanet HD 209458b. For hot Jupiters (periods less than ∼5 d), the a priori information that 10 per cent of these planets will transit their parent star due to the geometric transit probability leads to an estimate of the expected transit yields from radial velocity surveys. The radial velocity information can be used to construct an effective photometric follow-up strategy which will provide optimal detection of possible transits. Since the planet-harbouring stars are already known in this case, one is only limited by the photometric precision achievable by the chosen telescope/instrument. The radial velocity modelling code presented here automatically produces a transit ephemeris for each planet data set fitted by the program. Since the transit duration is brief compared with the fitted period, we calculate the maximum window for obtaining photometric transit observations after the radial velocity data have been obtained, generalizing for eccentric orbits. We discuss a typically employed survey strategy which may contribute to a possible radial velocity bias against detection of the very hot Jupiters which have dominated the transit discoveries. Finally, we describe how these methods can be applied to current and future radial velocity surveys.  相似文献   

6.
The Wide Angle Search for Planets (WASP) survey currently operates two installations, designated SuperWASP-N and SuperWASP-S, located in the Northern and Southern hemispheres, respectively. These installations are designed to provide high time-resolution photometry for the purpose of detecting transiting extrasolar planets, asteroids, and transient events. Here, we present results from a transit-hunting observing campaign using SuperWASP-N covering a right ascension (RA) range of 06h < RA < 16h. This paper represents the fifth and final in the series of transit candidates released from the 2004 observing season. In total, 729 335 stars from 33 fields were monitored with 130 566 having sufficient precision to be scanned for transit signatures. Using a robust transit detection algorithm and selection criteria, six stars were found to have events consistent with the signature of a transiting extrasolar planet based on the photometry, including the known transiting planet XO-1b. These transit candidates are presented here along with discussion of follow-up observations and the expected number of candidates in relation to the overall observing strategy.  相似文献   

7.
We propose that the presence of additional planets in extrasolar planetary systems can be detected by long-term transit timing studies. If a transiting planet is on an eccentric orbit then the presence of another planet causes a secular advance of the transiting planet's pericentre over and above the effect of general relativity. Although this secular effect is impractical to detect over a small number of orbits, it causes long-term differences when future transits occur, much like the long-term decay observed in pulsars. Measuring this transit-timing delay would thus allow the detection of either one or more additional planets in the system or the first measurements of non-zero oblateness ( J 2) of the central stars.  相似文献   

8.
We present the results of an extensive study of the detectability of Earth-sized planets and super-Earths in the habitable zones of cool and low-mass stars using transit timing variation method. We have considered a system consisting of a star, a transiting giant planet, and a terrestrial-class perturber, and calculated TTVs for different values of the parameters of the system. To identify ranges of the parameters for which these variations would be detectable by Kepler, we considered the analysis presented by Ford et?al. (Transit timing observations from Kepler: I. Statistical analysis of the first four months. ArXiv:1102.0544, 2011) and assumed that a peak-to-peak variation of 20 s would be within the range of the photometric sensitivity of this telescope. We carried out simulations for resonant and non-resonant orbits, and identified ranges of the semimajor axes and eccentricities of the transiting and perturbing bodies for which an Earth-sized planet or a super-Earth in the habitable zone of a low-mass star would produce such TTVs. Results of our simulations indicate that in general, outer perturbers near first- and second-order resonances show a higher prospect for detection. Inner perturbers are potentially detectable only when near 1:2 and 1:3 mean-motion resonances. For a typical M star with a Jupiter-mass transiting planet, for instance, an Earth-mass perturber in the habitable zone can produce detectable TTVs when the orbit of the transiting planet is between 15 and 80 days. We present the details of our simulations and discuss the implication of the results for the detection of terrestrial planets around different low-mass stars.  相似文献   

9.
The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main physical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.  相似文献   

10.
The resonance theory is discussed with respect to the Solar System with a view to show that every triad of successive planets in the Solar System follows Laplace's resonance relation. With rings now known to exist around three of the four major planets, scientists have begun to speculate about the possible existence of ring structure and one or two small planets going around the Sun itself. It is also believed that the ring systems may exist around the planets Neptune and Mars. In this paper an attempt is made to provide a basis to these beliefs using Laplace's resonance relation. The triads of successive innermost objects (rings and/or satellites) in the satellite — systems of Jupiter, Saturn and Uranus are also shown to follow Laplace's resonance relation.  相似文献   

11.
We report on observations of transit events of the transiting planets XO‐1b and TrES‐1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO‐1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)‐Project‐ and Exoplanet Transit Database (ETD)‐data, including our own I ‐band photometry obtained in March 2007, we find that the orbital period is P = (3.941501 ± 0.000001) d, a slight change by ∼3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R ‐band photometry of two transits of TrES‐1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P = (3.0300722 ± 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Transiting planets manifest themselves by a periodic dimming of their host star by a fixed amount. On the other hand, light curves of transiting circumbinary (CB) planets are expected to be neither periodic nor to have a single depth while in transit. These propertied make the popular transit-finding algorithm Box Least Squares (BLS) almost ineffective so a modified version of BLS for the identification of CB planets was developed – CB-BLS. We show that using this algorithm it is possible to find CB planets in the residuals of light curves of eclipsing binaries that have noise levels of 1 per cent and more – quality that is routinely achieved by current ground-based transit surveys. Previous searches for CB planets using variation in eclipse times minima of CM Dra and elsewhere are more closely related to radial velocity than to transit searches and so are quite distinct from CB-BLS. Detecting CB planets is expected to have significant impact on our understanding of exoplanets in general, and exoplanet formation in particular. Using CB-BLS will allow to easily harness the massive ground- and space-based photometric surveys in operation to look for these hard-to-find objects.  相似文献   

13.
We determine new linear ephemerides of transiting exoplanets using long-cadence de-trended data from quarters Q1 to Q17 of the Kepler mission. We analysed transit-timing variation(TTV) diagrams of 2098 extrasolar planets. The TTVs of 121 objects were excluded(because of insufficient datapoints, influence of stellar activity, etc.). Finally, new linear ephemerides of 1977 exoplanets from the Kepler archive are presented. A significant linear trend was observed on TTV diagrams of approximately 35% of the exoplanets studied. Knowing the correct linear ephemeris is key for successful follow-up observations of transits. Residual TTV diagrams of 64 analysed exoplanets show periodic variation, and 43 of these TTV planets were not previously reported.  相似文献   

14.
Transiting exoplanetary systems are surpassingly important among the planetary systems since they provide the widest spectrum of information for both the planet and the host star. If a transiting planet is on an eccentric orbit, the duration of transits T D is sensitive to the orientation of the orbital ellipse relative to the line of sight. The precession of the orbit results in a systematic variation in both the duration of individual transit events and the observed period between successive transits,   P obs  . The periastron of the ellipse slowly precesses due to general relativity and possibly the presence of other planets in the system. This secular precession can be detected through the long-term change in   P obs  (transit timing variations, TTV) or in T D (transit duration variations, TDV). We estimate the corresponding precession measurement precision for repeated future observations of the known eccentric transiting exoplanetary systems (XO-3b, HD 147506b, GJ 436b and HD 17156b) using existing or planned space-borne instruments. The TDV measurement improves the precession detection sensitivity by orders of magnitude over the TTV measurement. We find that TDV measurements over a approximately 4 yr period can typically detect the precession rate to a precision well exceeding the level predicted by general relativity.  相似文献   

15.
We present results from 30 nights of observations of the open cluster NGC 7789 with the Wide Field Camera on the Isaac Newton Telescope, La Palma. From ∼900 epochs, we obtained light curves and Sloan   r '− i '  colours for ∼33 000 stars, with ∼2400 stars having better than 1 per cent precision. We expected to detect ∼2 transiting hot Jupiter planets if 1 per cent of stars host such a companion and a typical hot Jupiter radius is  ∼1.2  R J  . We find 24 transit candidates, 14 of which we can assign a period. We rule out the transiting planet model for 21 of these candidates using various robust arguments. For two candidates, we are unable to decide on their nature, although it seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting a single eclipse, for which we derive a radius of  1.81+0.09−0.00  R J  . Three candidates remain that require follow-up observations in order to determine their nature.  相似文献   

16.
We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovian-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated transit timing variations (TTVs) for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Kepler’s planetary candidates. Results of our study indicate that in general, the amplitudes of the TTVs fall within the detectable range of timing precision obtained from the Kepler’s long-cadence data, and depending on the parameters of the system, their magnitudes may become as large as a few hours. The probability of detection is higher for super-Earth Trojans with slightly eccentric orbits around short-period Jovian-type planets with masses slightly smaller than Jupiter. We present the details of our study and discuss the implications of its results.  相似文献   

17.
We present the results of a systematic search for transiting planets in a ∼5 Myr open cluster, NGC 2362. We observed ∼1200 candidate cluster members, of which ∼475 are believed to be genuine cluster members, for a total of ∼100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs ( f p) for 1–3 and 3–10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5 R Jup. These upper limits represent observational constraints on the number of stars with HJs at an age ≲10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on f p near the observed values of f p in the solar neighbourhood.  相似文献   

18.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

19.
The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.  相似文献   

20.
The limb darkening and center-to-limb variation of the continuum polarization is calculated for a grid of one-dimensional stellar model atmospheres and for a wavelength range between 300 and 950 nm. Model parameters match those of the transiting stars taken from the NASA exoplanet archive. The limb darkening of the continuum radiation for these stars is shown to decrease with the rise in their effective temperature. For the λ = 370 nm wavelength, which corresponds to the maximum of the Johnson–Cousins UX filter, the limb darkening values of the planet transiting stars lie in a range between 0.03 and 0.3. The continuum linear polarization depends not only on the effective temperature of the star but also on its gravity and metallicity. Its value decreases for increasing values of these parameters. In the UX band, the maximum linear polarization of stars with transiting planets amounts to 4%, while the minimum value is approximately 0.3%. The continuum limb darkening and the linear polarization decrease rapidly with wavelength. At the R band maximum (λ = 700 nm), the linear polarization close to the limb is in fact two orders of magnitude smaller than in the UX band. The center- to-limb variation of the continuum intensity and the linear polarization of the stars with transiting planets can be approximated, respectively, by polynomials of the fourth and the sixth degree. The coefficients of the polynomials, as well as the IDL procedures for reading them, are available in electronic form. It is shown that there are two classes of stars with high linear polarization at the limb. The first one consists of cold dwarfs. Their typical representatives are HATS-6, Kepler-45, as well as all the stars with similar parameters. The second class of stars includes hotter giants and subgiants. Among them we have CoRoT-28, Kepler-91, and the group of stars with effective temperatures and gravities of approximately 5000 K and 3.5, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号