首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

2.
《Gondwana Research》2009,15(4):569-586
This paper outlines the CHIME (chemical Th–U-total Pb isochron method) dating method, which is based on precise electron microprobe analyses of Th, U and Pb in Th- and U-bearing accessory minerals such as monazite, xenotime, zircon and polycrase. The age-mapping technique that is applicable to young monazite and zircon is also described. CHIME dating consists of analyzing multiple spots within homogeneous age domains that show sufficient compositional variation, and then these data are used to construct a “pseudo-isochron” from which an age can be obtained via regression. This method, when coupled with discrimination of possibly concordant age data by chemical criteria such as the (Ca + Si)/(Th + U + Pb + S) ratio for monazite and Ca and S contents for zircon, has the potential advantage of significant precision, and the ability to work with minerals that have a significant initial common Pb component. This technique can identify two or more homogeneous domains that are separated by age gaps smaller than the error on individual spot age analysis. Many features that are insignificant in major element analysis can have major impact in the acquisition of trace element data. Critical factors include the roles of collimator slit, detector gas, background estimation, accelerating voltage, probe current, X-ray interferences and count rate in affecting the accuracy, and a way to apply the Th and U interference correction without pure Th- and U-oxides or synthesized pure ThSiO4. The age-mapping procedure for young monazite and zircon includes acquiring PbMα (or PbMβ) intensity of individual pixels with multiple spectrometers, correcting background with background maps computed from a measured background intensity by the intensity relationships determined in advance of the measurement, calibrating of intensity with standards and calculating of ages from the Th, U and Pb concentrations. This technique provides age maps that show differences in age domains on the order of 20 Ma with in monazite as young as 100 Ma. The effect of sample damage by irradiation of intense and prolonged probe measurement is also described.  相似文献   

3.
《Precambrian Research》2006,144(3-4):278-296
The evolution of the basement of southern Madagascar north and south of the Ranotsara shear zone was investigated using (U + Th)/Pb electron probe monazite age dating in combination with petrographic constraints. Several monazite grains show a stepwise progression of younger ages towards the rim indicating partial and complete resetting during tectonic, metamorphic and/or fluid events. The oldest ages, ranging from 630–2400 Ma, occur relatively rare in relic cores. A first, clear age-population is dated at 550–560 Ma. Most ages fall in two populations at 420–460 and 490–500 Ma, which in some samples overlap in error. We interprete these ages as dating low-pressure and high-temperature metamorphism. We have also clear evidence for Carboniferous (300–310 Ma) monazite overgrowth rims, which can not directly be related to macroscopic structures or metamorphic parageneses. In combination with literature data, we propose that the observed monazite age populations are related to Gondwana amalgamation and subsequent rifting events during the break up of Gondwana. Our study confirms that only the electron or ion microprobe yields sufficient spatial resolution to date individual shells of multiple zoned monazites in the polymetamorphic basement of Madagascar.  相似文献   

4.
The Hongcheon area in the central Gyeonggi massif is a unique carbonatite locality in South Korea. The age and petrogenesis of this uncommon rock type and associated rare earth element (REE) mineralization still remain uncertain. The NNE trending, 20–50 m wide and ~ 2 km long Fe-REE ore bodies are hosted within a swarm of carbonatite dykes intruding Precambrian basement gneisses. The intrusive nature of the dykes, fenite alteration halos, exsolution intergrowths of constituent minerals and stable isotope data in the literature collectively attest to the ore formation by crystallization of carbonatite magma. The carbonatites are composed primarily of dolomite, ankerite, siderite, magnetite, monazite, apatite, strontianite and pyrite with subordinate quartz, barite, columbite, fergusonite and calcite. The principal carrier phase of REEs is monazite. The REE contents of monazite vary narrowly (TREO = 66.1–69.4 wt.%) irrespective of the textural occurrence. Although the monazite shows a sample-to-sample variation in La/Nd ratio, the textural varieties from each rock sample are similar with respect to this ratio. Thorium contents in monazite are consistently low (average = ca. 2500 ppm) with unusually high (average = ca. 2200) Th/U ratios. Sensitive high-resolution ion microprobe (SHRIMP) dating of monazite yielded a weighted mean 208Pb/232Th age of 232.9 ± 1.6 Ma, which agrees with a weighted mean 206Pb/238U age of 227.2 ± 8.3 Ma within uncertainties. This age, coupled with comparable intrusion ages documented for kimberlites and monzonite-syenite-gabbro-mangerite suite from central Korea, demonstrates the occurrence of mantle-derived alkaline igneous activities and associated REE mineralization following the North and South China collision. The intrusion of the Hongcheon carbonatite and potassic or ultrapotassic suite in central Korea may have resulted from the post-collisional detachment of the subducted slab and consequent upwelling of hot asthenosphere and melting of the overriding lithospheric mantle. Initial Nd‐Sr isotopic ranges of the Hongcheon carbonatite (εNd = ca. − 26, 87Sr/86Sr = 0.703–0.706) and previous trace element data deny a petrogenetic linkage with the coeval silicate magmas. The metasomatism in the lithospheric mantle source of the Hongcheon carbonatite must have occurred in the distant past (> 1.7 Ga) to generate significantly negative εNd values.  相似文献   

5.
We report field relationships, petrography and isotopic ages from two superposed basement units of the Kabul Block, the so called Lower Sherdarwaza and Upper Welayati formations. The Sherdarwaza Formation is represented mostly by migmatites and gneisses that are derived from pelitic and psammitic lithologies with lenses and layers of mafic and carbonate rocks. Several bodies of orthogneisses are also exposed in the Sherdarwaza Formation. The Upper Welayati Formation is characterized by micaschist, quartzite and amphibolites. SHRIMP U–Pb data on zircon from the orthogneiss in the Sherdarwaza Formation indicates a Neoarchean age of ca 2.5–2.8 Ga for their magmatic crystallization. The rocks exhibit granulite facies conditions of 5–7 kbar and 800 °C that are documented by the presence of orthopyroxene and Ti-rich biotite in the orthogneiss and by olivine and phlogopite in some calc-silicate rocks at contact with marble. A Paleoproterozoic age of ca. 1.85–1.80 Ga for this metamorphism was obtained using U-Pb SHRIMP dating on zircon and U-Th dating on monazite. Mineral textural relations also show a younger amphibolite facies metamorphism that is documented in both the Sherdarwaza and Welayati formations. This metamorphism occurred at relatively higher pressure conditions of up to 9 kbar at ca. 650 °C, compared to the granulite facies event. A Neoproterozoic age of ca 0.85–0.9 Ga, for this metamorphism is confirmed by Ar-Ar data on biotite and white mica as well as by U-Th data on monazite. By combining the presented results on the metamorphic petrology, geochronology and geochemistry, we conclude that: (1) The Kabul basement is a fragment of an Archean block (craton); (2) the ca. 1.85–1.8 and 0.9–0.85 Ga metamorphism marks an important orogenic events for the basement rocks of the Kabul Block which was stabilized during the early Precambrian; (3) the two metamorphic ages correlate well with global-scale orogenies related to the assembly of the Paleoproterozoic Columbia and Neoproterozoic Rodinia supercontinents; (4) based on metamorphic characteristics and ages, the Kabul basement rocks show an affinity to the Neoarchean rocks of the Tarim and/or South China cratons.  相似文献   

6.
The NW–SE trending Longshoushan is in the southwestern margin of the Alxa Block, which was traditionally considered the westernmost part of the North China Craton (NCC). Precambrian crystalline basement exposed in the Longshoushan area was termed the “Longshoushan Complex”. This complex's formation and metamorphism are significant to understand the geotectonics and early Precambrian crustal evolution of the western NCC. In this study, field geology, petrology, and zircon U–Pb and Lu–Hf isotopes of representative orthogneisses and paragneisses in the Longshoushan Complex were investigated. U–Pb datings reveal three Paleoproterozoic magmatic episodes (ca. 2.33, ca. 2.17 and ca. 2.04 Ga) and two subsequent regional metamorphic events (ca. 1.95–1.90 Ga and ca. 1.85 Ga) for metamorphic granitic rocks in the Longshoushan Complex. U–Pb dating of the detrital magmatic zircons from two paragneisses yields concordant 207Pb/206Pb ages between 2.2 Ga and 2.0 Ga, and a small number of metamorphic zircon rims provide a ca. 1.95 Ga metamorphic age, suggesting that the depositional time of the protolith was between 2.0 and 1.95 Ga and that the sedimentary detritus was most likely derived from the granitic rocks in the Longshoushan Complex itself. Zircon Lu–Hf isotopic analyses indicate that nearly all magmatic zircons from ca. 2.0 Ga to ca. 2.17 Ga orthogneisses have positive εHf(t) values with two-stage Hf model ages (TDMC) ranging from 2.45 to 2.65 Ga (peak at ca. 2.5 Ga), indicating that these Paleoproterozoic granitic rocks were derived from the reworking of the latest Neoarchean–early Paleoproterozoic juvenile crust. Detrital magmatic zircons from two paragneisses yield scattered 176Hf/177Hf ratios, εHf(t) and TDMC values, further indicating that the sedimentary detritus was not only derived from these plutonic rocks but also from other unreported or denuded Paleoproterozoic igneous rocks. The ca. 2.15 Ga detrital magmatic zircons from one paragneiss have negative εHf(t) values with TDMC ranging from 2.76 to 3.04 Ga, indicating another important crustal growth period in the Longshoushan region. These data indicate that the Longshoushan Complex experienced Neoarchean–Early Paleoproterozoic crustal growth, approximately ca. 2.3–2.0 Ga experienced multiphase magmatic events, and approximately ca. 1.95–1.90 Ga and ca. 1.85 Ga experienced high-grade metamorphic events. The sequence of tectonothermal events is notably similar to that of the main NCC. Together with the datasets from an adjacent area, we suggest that the western Alxa Block was most likely an integrated component of the NCC from the Neoarchean to the Paleoproterozoic.  相似文献   

7.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

8.
The combination of ion microprobe dating and cathodoluminescence (CL) imaging of zircons from a high-grade rock from the Central Zone of the Limpopo Belt were used to constrain the age of metamorphic events in the area. Zircon grains extracted from an orthopyroxene-gedrite-bearing granulite were prepared for single crystal CL-imaging and ion microprobe dating. The grains display complex zoning when using SEM-based CL-imaging. A common feature in most grains is the presence of a distinct core with a broken oscillatory zoned structure, which clearly appears to be the remnant of an original grain of igneous origin. This core is overgrown by an unzoned thin rim measuring about 10–30 μm in diameter, which is considered as new zircon growth during a single metamorphic event. Selected domains of the zircon grains were analysed for U, Pb and Th isotopic composition using a CAMECA IMS 1270 ion microprobe (Nordsim facility). Most of the grains define a near-concordant cluster with some evidence of Pb loss. The most concordant ages of the cores yielded a weighted mean 207Pb/206Pb age of 2689 ± 15 (2σ) Ma, interpreted as the age of the protolith of an igneous origin. The unzoned overgrowths of the zircon grains yielded a considerably younger weighted mean 207Pb/206Pb age of ∼2006.5 ± 8.0 Ma (2σ), and these data are interpreted to reflect closely the age of the ubiquitous high-grade metamorphic event in the Central Zone. This study shows clearly, based on both the internal structure of the zircons and the data obtained by ion microprobe dating, that only a single metamorphic event is recorded by the studied 2.69 Ga old rocks, and we found no evidence of an earlier metamorphic event at ∼2.5 Ga as postulated earlier by some workers.  相似文献   

9.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

10.
The Bayan Obo Fe–REE–Nb deposit is the world's largest rare earth element (REE) resource and with the increasing focus on critical metal resources has become a focus of global interest. The deposit is hosted in the Palaeoproterozoic Bayan Obo Group, mainly concentrated in the H8 dolomite marble. The ores consist of light REE enriched monazite and bastnäsite, with a wide array of other REE minerals. Niobium mineralisation is hosted primarily in aeschynite and pyrochlore, although there are a wide range of other Nb-minerals. The origin of the host dolomite and ore bodies has been a subject of intense debate. The host dolomite has been proposed to be both of sedimentary origin and an igneous carbonatite. Carbonatite dykes do occur widely in the area, and consideration of the textural, geochemical and isotopic composition of the dolomite suggests an origin via intrusion of magmatic carbonatite into meta-sedimentary marble, accompanied by metasomatism. The origin of the ore bodies is complex, indicated most strongly by an ~ 1 Ga range in radiometric age determinations. Compilation of available data suggests that the ores were originally formed around 1.3 Ga (Sm–Nd isochron ages; Th–Pb ages of zircon), close in time to the intrusion of the carbonatite dykes. The ores were subsequently subjected to several stages of deformation and hydrothermal overprint, culminating in deformation, metamorphism and fluid flow related to the Caledonian subduction of the Mongolian Plate under the North China Craton from ~ 450 to 420 Ma (Th–Pb ages of monazite). This stage resulted in the formation of the strong foliation (‘banding’) of the ore. The presence of undeformed veins with alkali mineral fills, and the overprinting of the foliation by Nb minerals suggest that secondary fluid flow events may also have contributed to the metal endowment of the deposits, as well as remobilising the original Fe and REE mineralisation. The alteration mineralogy and geochemistry of the ores are comparable to those of many REE mineralised carbonatites. Initial Nd isotope ratios at 450 Ma, however, suggest crustal sources for the metals. These conflicting lines of evidence can be reconciled if a (at least) two stage isotopic evolution is accepted for the deposits, with an original mantle-sourced, carbonatite-related metal accumulation forming around 1.3 Ga with εNd close to 0. The ore was remobilised, with associated re-equilibration of Th–Pb isotope systematics during deformation at ~ 450 Ma. A further stage of alkaline hydrothermal fluid was responsible for Nb mineralisation at this stage. The complex geological history, with multiple stages of alkaline, high field strength element-rich, metasomatic fluid flow, is probably the main reason for the exceptional metal endowment of the Bayan Obo area.  相似文献   

11.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

12.
Perovskite, a common Th- and U-enriched accessory mineral crystallised from kimberlitic magmas, has long been thought to be an important geochronometer for dating the emplacement of kimberlite. However, it also contains variably high levels of common Pb, which makes it difficult to obtain a precise measurement of radiogenic Pb/U and Pb/Th isotopic compositions using microbeam techniques such as SIMS and LA-ICP-MS. We present calibration protocols for in situ U–Pb and Th–Pb age determination of kimberlitic perovskite using the large double-focusing Cameca IMS 1280. Linear relationships are found between ln(206Pb?+/U+) and ln(UO2+/U+), and between ln(208Pb?+/Th+) and ln(ThO+/Th+), based on which the inter-element fractionation in unknown samples during SIMS analyses can be precisely calibrated against a perovskite standard. The well-characterized Ice River perovskite is chosen as the U–Pb and Th–Pb age standard in this study. The 204Pb-correction method was used to estimate the fraction of common Pb, which is consistent with the results obtained using the 207Pb-based correction method for the dated perovskites of Phanerozoic age.A Tazheran perovskite with unusually high U but rather low Th yielded a Concordia U–Pb age of 462.8 ± 2.5 Ma and a Th–Pb age of 462 ± 4 Ma. Two perovskite samples from the Iron Mountain kimberlite have identical Concordia U–Pb ages of 410.8 ± 3.4 Ma and 411.0 ± 2.6 Ma, which are consistent within errors with their corresponding Th–Pb ages of 409.2 ± 7.2 Ma and 412.3 ± 3.3 Ma, respectively. Two perovskite samples from the Wesselton Mine of South Africa yielded indistinguishable 206Pb/238U ages of 91.5 ± 2.2 Ma and 90.3 ± 2.9 Ma, and Th–Pb ages of 90.5 ± 0.8 Ma and 88.4 ± 1.6 Ma, respectively. Accuracy and precision of 1–2% (95% confidence level) for these measurements have been demonstrated by the consistency of their U–Pb and Th–Pb ages with the recommended U–Pb ages of previous works.  相似文献   

13.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   

14.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

15.
Detrital zircons from a Palaeoproterozoic quartzite, deposited between 1.85 and 1.82 Ga in the northern Aravalli orogen of NW India, show a distinctive age peak of ca. 1.85 Ga and variable, but largely subchondritic εHf1.85 Ga between ? 1.3 and ? 21.0 corresponding to hafnium model ages of 2.5 to 3.6 Ga. These data indicate an important period of reworking of ancient (Eo- to Neoarchaean), strongly heterogeneous continental crust at this time. Prevalence of ca. 1.85 Ga subduction-related granitoids, almost identical U–Pb age spectra and εHft of detrital zircons in ca. 1.85 Ga metasedimentary rocks in the Aravalli orogen and the inner Lesser Himalaya indicate similar sediment provenances and thus a geological connection between these two terranes during late Palaeoproterozoic. All together, the data constrain a rapid succession of sedimentation, metamorphism and subduction-related magmatic activity and support the interpretation of an active geodynamic realm along the entire north Indian margin at ca. 1.85 Ga. Comparison of detrital zircon data in conjunction with published paleomagnetic data from north India and other crustal blocks of the Columbia supercontinent, additionally, suggest a close affinity of north India with Madagascar, the Cathaysia block of South China and South Korea during Columbia times.  相似文献   

16.
《Precambrian Research》2006,144(3-4):199-212
LA-ICP-MS U–Pb zircon dating and cathodoluminescene (CL) image analysis were carried out to determine the protolith and metamorphic ages of high-grade Al-rich gneisses, named as “khondalites”, from the Jining Complex of the North China Craton (NCC). The analytical results of more than 200 detrital zircon grains from the khondalites show three main age populations: 2060 Ma, 1940 Ma and 1890 Ma. These data indicate that the provenance of the Jining khondalites is Paleoproterozoic in age, but not Archean as previously suggested, and the sediments were derived from a provenance different from the Eastern Block and the Yinshan Terrane of the NCC. The nearly concordant youngest age of 1842 ± 16 Ma (207Pb/206Pb age) for the detrital zircons is interpreted as the maximum depositional age of the khondalites. Overgrowth rims of detrital zircons yield an age of 1811 ± 23 Ma, which we interpret as the metamorphic age. The new age data are consistent with the recent three-fold tectonic subdivision of the NCC and support that the Eastern and Western Blocks collided at ∼1.8 Ga to form the coherent NCC.  相似文献   

17.
The in-situ “chemical” Th–U–Pb dating of monazite with the electron microprobe is used to unravel the Neoproterozoic tectono-thermal history of the “Erinpura Granite” terrane in the foreland of the Delhi Fold Belt (DFB) in the NW Indian craton. These granitoids are variably deformed and show effects of shearing activity. Monazites from the Erinpura granitoids recorded two main events; (1) protolith crystallization at 863 ± 23 Ma and (2) recrystallization and formation of new Th-poor monazite at 775 ± 26 Ma during shear overprint. Some components of the Erinpura granitoids, such as the Siyawa Granite and granites exposed near Sirohi town, show evidence of migmatization. This migmatization event is documented by anatexis and associated monazite crystallization at 779 ± 16 Ma. The age data indicate an overlap in timing between anatectic event and ductile shear deformation. The end of the tectono-thermal event in the Sirohi area is constrained by a 736 ± 6 Ma Ar–Ar muscovite age data from the ductile shear zone.  相似文献   

18.
In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet–biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet–biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding εHf(T) from −36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.  相似文献   

19.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

20.
We present results of combined in situ U–Pb dating of detrital zircons and zircon Hf and whole-rock Nd isotopic compositions for high-grade clastic metasedimentary rocks of the Slyudyansky Complex in eastern Siberia. This complex is located southwest of Lake Baikal and is part of an early Paleozoic metamorphic terrane in the eastern part of the Central Asian Orogenic Belt (CAOB). Our new zircon ages and Hf isotopic data as well as whole-rock Nd isotopic compositions provide important constraints on the time of deposition and provenance of early Paleozoic high-grade metasedimentary rocks as well as models of crustal growth in Central Asia. Ages of 0.49–0.90 Ga for detrital zircons from early Paleozoic high-grade clastic sediments indicate that deposition occurred in the late Neoproterozoic and early Paleozoic, between ca. 0.62–0.69 and 0.49–0.54 Ga. Hf isotopic data of 0.82–0.69 Ga zircons suggest Archean and Paleoproterozoic (ca. 2.7–2.8 and 2.2–2.3 Ga; Hfc = 2.5–3.9 Ga) sources that were affected by juvenile 0.69–0.82 Ga Neoproterozoic magmatism. An additional protolith was also identified. Its zircons yielded ages of 2.6–2.7 Ga, and showed high positive εHf(t) values of +4.1 to +8.0, and Hf model ages tHf(DM) = tHfc = 2.6–2.8 Ga, which is nearly identical to the crystallization ages. These isotopic characteristics suggest that the protolith was quite juvenile. The whole-rock Nd isotopic data indicate that at least part of the Slyudyansky Complex metasediments was derived from “non-Siberian” provenances. The crustal development in the eastern CAOB was characterized by reworking of the early Precambrian continental crust in the early Neoproterozoic and the late Neoproterozoic–early Paleozoic juvenile crust formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号