首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study defines the source area, sub-aerial weathering, and sedimentary cycle level, as well as heavy metal content and origin, of the Çoruh River bed sediments. The studied sediments are geochemically classified as litharenite based on the ratio of the major element contents. Relative to the Upper Continental Crust (UCC), trace elements Rb, Sr, Ba, Th, U, Zr, Hf, Y, Nb, and Pb are generally depleted; Co, Ni, Cu, Sc, and V are generally enriched; and Au is depleted in some places and enriched in other places. The rare earth element (REE) distributions of the samples exhibit a trend similar to that of the upper continental crust (UCC); however, low to moderate depletion occurs in the bed sediments in UCC. The analyzed samples exhibit low Chemical Index of Alteration (CIA) values, Plagioclase Index of Alteration (PIA) values (<50), CIA/WIP (Weathering Index ratios <1), and substantially high Index of Compositional Variability values (ICV) (>1). Thus, the samples are not chemically mature and are mainly derived from non-altered sources and were exposed the simple cycling history. REEs are depleted in the river bed sediments, unlike the world river average silt, world river average clay, and suspended sediment in world rivers. Minor enrichment of Zn, Sn, and Sc contents, low-to-moderate enrichment of Cu content, very severe enrichment of as content, and extremely severe enrichment of Ni content of the analyzed samples are observed. Consequently, stream bed sediments are derived from intermediate sources close to mid-continental crust rather than felsic sources Low-to-moderate degrees of chemical weathering of these sediments indicate increased tectonic activity, increased erosion, and rapid sedimentation in semiarid to arid conditions in the source regions over time. Thus, the sediments are chemically immature. These sediments are exposed to lithogenic and anthropogenic contamination.  相似文献   

2.
This present study describes the geochemistry of fluvial sediments of the Palar river (lower reaches), Southern Peninsular India, with an aim to evaluate their provenance, weathering and tectonic setting. The bulk sediment chemistry is influenced by grain size. The river sediments are enriched with SiO2 and depleted in Al2O3, K2O, CaO, Na2O, MgO, P2O5, MnO, Fe2O3 as compared with UCC values. Geochemical classification indicate that the sediments are mainly arkose, wacke and shale in composition. Discriminant diagrams together with immobile element ratio plots reveal that, the Palar river sediments are mostly derived from rocks formed in an active continental margin. Additionally, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate felsic rock sources. The chemical indices of alteration suggest that Palar river sediments are chemically immature and have experienced low chemical weathering effects. This is further supported by the Th/U Rb/Sr ratio and A-CN-K ternary diagram, with most of the sample data points falling close to the plagioclase-smectite line. The bivariate plot of Th/Sc versus Zr/Sc suggest a moderate recycled origin of the sediments.  相似文献   

3.
Geochemical analysis for the Mesoproterozoic clastic sedimentary rocks of the basal Gulcheru Formation of the Cuddapah Basin in the Gugudu-Dadithota-Parnapalle-Palkonda region (extending atleast 40 km) have been performed to highlight their provenance and weathering history. The low K2O/Al2O3 ratios of the representative samples points to the recycled nature of sediments and illite clay in the sediments indicate an overall cold climate (low chemical weathering degree). All the provenance diagrams indicate a mixed source of the Gulcheru sediments with felsic dominancy and Upper continental crust (UCC) signature.  相似文献   

4.
In the present study, the lake floor sediments of the Karlad lake, located at higher elevation in Wayanad region of north Kerala, were analyzed for textural characteristics, organic matter, calcium carbonate, major oxides and trace elements. This study was carried out to infer the chemical composition, provenance and intensity of chemical weathering of the source rocks in the lake catchment area. Textural studies signify that lake floor sediments are predominantly as clays (38.75%) followed by sand (36.36%) and silt (25.19%) fractions. The C/N ratio of the lake sediments signify that the sediments are both autochthonous and allochthonous in origin. The major oxides average content reveals the order of abundance as follows; SiO2 > Al2O3 > Fe2O3 > TiO2 > MgO > CaO > K2O > P2O5 > Na2O > MnO. Moreover, the various weathering indices such as Chemical Index of Alteration (CIAAvg. 93.5%), PlagioclaseIndex of Alteration (PIA- Avg. 95.6%) and Chemical Index of Weathering (CIW- Avg. 95.76%) suggest an intense chemical weathering of the source area. The A-CN-K diagram is also corroborating the same. Various provenance discrimination diagrams reveal that the sediments are derived from the mafic source rocks.  相似文献   

5.
The major, trace and rare earth elements geochemistry and clay mineral compositions in the river bed sediments from lower reaches of Godavari river suggest that they are derived from weathering of felsic rocks. Trace and rare earth elemental compositions indicate evidence of sedimentary sorting during transportation and deposition. Lower concentrations of transition elements, such as V, Ni and Cr imply enrichment of felsic minerals in these bed sediments. The REE pattern in lower Godavari sediments is influenced by the degree of source rock weathering. The light rare earth elements (LREE) content are indicating greater fractionation compared to the heavy rare earth elements (HREE). A striking relationship is observed between TiO2 and gZREE content suggesting a strong control by LREE-enriched titaniferous minerals on REE chemistry. Shale-normalized REE pattern demonstrate a positive Eu anomaly, suggesting weathering of feldspar and their secondary products, which are enriched in Eu. Chondrite-normalised REE pattern is characteristic of felsic volcanic, granites and gnessic source rocks. Trace elemental compositions in sediments located near urban areas suggest influence of anthropogenic activity. Chemical Index of Alteration (CIA) is high (avg. 65.76), suggesting a moderate chemical weathering environment. X-ray diffraction analysis of clay fraction shows predominance of clay minerals that are formed because of the chemical weathering of felsic rocks.  相似文献   

6.
Subaerial weathering level, source area and tectonic environments were interpreted by using petrographic and geochemical characteristics of Eocene age sandstones found in the eastern Pontides. The thickness of Eocene age clastic rocks in the eastern Pontides ranges from 195 to 400 m. Mineralogical components of sandstones were mainly quartz, feldspar, rock fragments, and opaque and accessory minerals. Depending on their matrix and mineralogical content, Eocene age sandstones are identified as arkosic arenite-lithic arenite and feldspathic wacke-lithic wacke. CIA (Chemical Index of Alteration) values observed in the Eocene age sandstones (43–55) suggest that the source terrain of the sandstones was not affected by intense chemical weathering. Low CIW/CIA (Chemical Index of Weathering/Chemical Index of Alteration) values of the sandstones studied here suggest only slightly decomposed material and having undergone little transport until final deposition. Zr/Hf, Th/Sc, La/Sc and CIA ratios are low and demonstrate a mafic source; on the other hand, high LREE/HREE ratios and a slightly negative Eu anomaly indicate a subordinate fclsic source. Modal mineralogical and SiO2/Al2O3 and K2O/Na2O and Th, Zr, Co, Sc of Eocene age sandstone contents indicate that they are probably magmatic arc originated and deposited in the back arc basin.  相似文献   

7.
华北北部洪水庄组黑色页岩是中元古代的富有机质沉积,它可能记录了当时重要的地球化学信息。通过对洪水庄组页岩中的常量和微量元素特征的分析,研究了洪水庄组的物源及其风化作用。高Th/Sc、Al2O3/TiO2、La/Sc、La/Cr、La/Co、Th/Cr和Th/Co值,低Cr/Zr和TiO2/Zr比值,Euan值、Co/Y Ti/Zr关系和La Th Sc组成表明洪水庄组页岩物源主要为上地壳中的长英质花岗闪长岩。洪水庄组页岩的Al、Ca、Na和K组成表明其具有较高的化学蚀变指数(CIA),同时,元素组成的化学风化作用轨迹反映了洪水庄组页岩受到钾交代作用的影响,可能导致CIA值被低估,其原始CIA值应在90以上。高的原始CIA、化学风化指数(CIW)和斜长石蚀变指数(PIA)表明洪水庄组物源区经历了强烈的化学风化作用。化学风化作用强度以及微量元素组成特征揭示了中元古代洪水庄组沉积时期可能处于温暖潮湿的气候条件,这与中元古代时期大气高CO2浓度以及华北板块古大陆当时位于低纬度地区重建的结果不谋而合。  相似文献   

8.
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.  相似文献   

9.
High-resolution siliciclastic grain size and bulk mineralogy combined with clay mineralogy, rubidium, strontium, and neodymium isotopes of Core MD01-2393 collected off the Mekong River estuary in the southwestern South China Sea reveals a monsoon-controlled chemical weathering and physical erosion history during the last 190,000 yr in the eastern Tibetan Plateau and the Mekong Basin. The ranges of isotopic composition are limited throughout sedimentary records: 87Sr/86Sr = 0.7206–0.7240 and εNd(0) = −11.1 to −12.1. These values match well to those of Mekong River sediments and they are considered to reflect this source region. Smectites/(illite + chlorite) and smectites/kaolinite ratios are used as indices of chemical weathering rates, whereas the bulk kaolinite/quartz ratio is used as an index of physical erosion rates in the eastern Tibetan Plateau and the Mekong Basin. Furthermore, the 2.5–6.5 μm/15–55 μm siliciclastic grain size population ratio represents the intensity of sediment discharge of the Mekong River and, in turn, the East Asian summer monsoon intensity. Strengthened chemical weathering corresponds to increased sediment discharge and weakened physical erosion during interglacial periods. In contrast, weakened chemical weathering associated with reduced sediment discharge and intensified physical erosion during glacial periods. Such strong glacial–interglacial correlations between chemical weathering/erosion and sediment discharge imply the monsoon-controlled weathering and erosion.  相似文献   

10.
The influence of hydrodynamics on the chemical composition of sediments is based on the uneven distribution of element abundances in different size fractions. In this study, 72 size‐fractional sediments from the Huanghe (Yellow River) and Changjiang (Yangtze River) riverbeds were measured with XRD, SEM, ICP‐AES and ICP‐MS. The analysis results show that the mineral and chemical characteristics change with grain size in the Huanghe and Changjiang sediments. According to the principal components analysis, three independent geochemical factors were found. The first factor elements, Zr, Hf, Th, U, Y, La and TiO2 are influenced by the existence of heavy minerals. The second factor elements, Al2O3, alkalis, alkaline earth (excluding Ca and Sr) and most of the transitional metals are dominated by clay minerals. The third factor group includes Ca and Sr, which were controlled by calcium‐bearing mineral contents and chemical weathering intensities. The various grain size distributions greatly affect the mineralogical and chemical compositions of bulk sediments. Compared to other size fractions, the 5–6PHI size fractions of the Huanghe and Changjiang sediments have special mineralogical and chemical compositions, and intermediate volume percentages. Weight or volume percentage of each size fraction may be more suitable than mean grain‐size of the bulk sediment to elucidate the grain size effects. Chemical Index of Alteration (CIA) values increase steeply with decreasing grain size, while Weathering Index of Parker (WIP) values are relatively stable. Because of the big influence of the abundance of clay minerals on CIA values, it is questionable to use CIA as a proxy of weathering intensity. Considering the clay mineral effects, stability in values and heterogeneous material properties, WIP has the potential to indicate the chemical weathering intensity of sediments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Loess geochemistry generally reflects paleo-weathering conditions and it can be used to determine the average composition of the upper continental crust (UCC). In this study, major and trace element concentrations were analyzed on loess samples from southwestern Hungary to determine the factors influencing their chemical compositions and to propose new average loess compositions. All studied loess samples had nearly uniform chemical composition, suggesting similar alteration history of these deposits. Chemical Index of Alteration values (58–69) suggested a weak to moderate degree of weathering in a felsic source area. Typical non-steady state weathering conditions were shown on the Al2O3–CaO + Na2O–K2O patterns, indicating active tectonism of the Alpine–Carpathian system during the Pleistocene. Whole-rock element budgets were controlled by heavy minerals derived from a felsic magmatic or reworked sedimentary provenance. Geochemical parameters indicated that dust particles must have been recycled and well homogenized during fluvial and eolian transport processes.  相似文献   

12.
Two cores of sediments, named NR and EB, were collected in the Simbock Lake (Mefou watershed, Yaoundé) to assess their provenance and the degree of heavy metal pollution based on mineralogical and geochemical data. The sediments are sandy, sand-clayey to clayey, and yellowish brown to greenish brown, and with high amounts of organic matter (average value of TOC is 1.95%). The sediments are mainly composed of quartz, kaolinite, accessory goethite, smectite, rutile, feldspars, illite, gibbsite, and interstratified illite-vermiculite. Fourier transform infrared (FT-IR) spectroscopy shows that kaolinite is less crystallized in the NR core than in the EB core. The Index of Compositional Variability (ICV), Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and the Rb/Sr and K2O/Rb ratios indicate a high weathering intensity in the source area. These sediments have low contents in Al2O3, Fe2O3, Na2O, K2O, MgO, and CaO as well as high values in SiO2, P2O5, TiO2, and MnO relative to the upper continental crust. The concentrations of Cr, V, Ba, and Zr are higher in the NR core than those in EB. The total rare earth element (REE) content varies between 78 and 405 ppm. The light REE are abundant (LREE/HREE ~?18–59; avg.?=?25.61). The chondrite-normalized REE patterns exhibit (i) negative Eu anomaly (Eu/Eu* ~?0.38–0.62; avg.?=?0.5), (ii) slight positive Ce anomaly (Ce/Ce* ~?1.11–1.34; avg.?=?1.11), and (iii) high REE fractionation ((La/Yb)N ~?12.3–51.75; avg.?=?25.61). The enrichment factor (EF) shows that the Mefou watershed through the Simbock Lake sediments is slightly polluted by the agricultural and urban activities.  相似文献   

13.
Pramod Singh   《Chemical Geology》2009,266(3-4):251-264
The sediments of the Ganga River from different depositional regimes in the Plain region such as the river channel, active flood-plain and the older flood-plain sediments from the inter-fluve region were analysed for major, trace and the rare earth elements (REEs). These are compared with catchment zone sediments of the river and probable source rocks in the Himalaya. The lower CIA values between 48 and 54.7 for the catchment sediments indicates that the sediments supplied to the Ganga Plain are chemically immature and subjected mostly to physical weathering due to higher erosion rates in the Himalaya. The CIA values ranging between 55 and 74, with average value of 59, 61.4 and 67 for sediments from the Plain's bed-load, active flood-plain and older flood-plain from the inter-fluve region indicates that silicate weathering of Ganga River sediments has occurred only after entering into the plains. This is likely because of higher residence time and change in the climate from cold-frigid in the Himalaya to tropical sub-humid in the plains. Therefore, the use of geochemical data on ancient system to infer climate in their source region may not always be true. Although the CIA values indicate a moderate chemical weathering in the plains, it is far from impressive. Dominance of physical weathering in the catchment region and lower degree of chemical weathering in the Plains indicate that weathering of sediments supplied by Himalayan Rivers, particularly the Ganga River may not have affected the atmospheric CO2 to a significant level as is generally believed. Thus the net effect of the Himalaya on the CO2 sequestration and consequent global cooling needs a re-evaluation.The plots of sediments in ternary diagram among La, Th, Sc and ratios involving Co/Th, La/Sc and Sc/Th indicate granitic to granodioritic source rocks to the sediments. The ratio plots involving relatively immobile Al2O3, TiO2 and FeO along with REE plots suggest that out of the major Himalayan lithologies, gneisses and Cambro-Ordovician granites of HHCS have acted as the dominant source to the sediments.The plots of LogNa2O/K2O vs. LogSiO2/Al2O3 and FeO/SiO2 vs. Al2O3/SiO2 diagrams show that the combination of processes including erosion, weathering, sorting and aeolian activity has together played a major role in progressively changing the chemistry from source rock to catchments bed-load to Plains bed-load, active flood-plains and the older inter-fluve sediments in the Ganga River system. The above plots demonstrate that as a result of above processes the ratios between the elements generally thought to be immobile and used in provenance studies does not always remain invariant and the linear trend line in the scatter gram between the two immobile elements show rotation around the fine grained end member.  相似文献   

14.
The Hangay–Hentey belt is situated in the central Northern Mongolia, and forms part of the Central Asian Orogenic Belt (CAOB). It is internally subdivided into seven terranes, the largest of which are the neighbouring Ulaanbaatar and Tsetserleg terranes. These coeval terranes are mainly composed of Silurian–Devonian accretionary complexes and Carboniferous turbidites. Proposals for their depositional setting range from passive margin through to island arc. A suite of 19 Ulaanbaatar terrane sandstones and mudrocks (Gorkhi and Altanovoo Formations) were collected with the aim of constraining their provenance, source weathering, and depositional setting based on whole-rock major and trace element data, and for comparison with the neighbouring Tsetserleg terrane. New REE analyses were also made of 35 samples from the Ulaanbaatar and Tsetserleg terranes. Geochemically the Ulaanbaatar sandstones are classed as wackes, and most of the mudstones as shales. Geochemical parameters suggest an immature source, similar to that of the Tsetserleg terrane. Geochemical contrasts between sandstones and mudrocks in the Ulaanbaatar sediments are small, and trends on element – Al2O3 variation diagrams are weak. Comparison with average upper continental crust (UCC), major element discriminant scores, and immobile element ratios (Th/Sc, Zr/Sc, Ce/Sc, Ti/Zr) indicate a uniform average source composition between dacite and rhyolite. Maximum Chemical Index of Alteration value in the Ulaanbaatar terrane is ∼65 after correction for K-metasomatism, indicating minimal weathering in a tectonically active source, similar to that of the Tsetserleg terrane. REE data in both terranes show moderate LREE enrichment and flat HREE segments, with negative Eu anomalies somewhat less than those in UCC and PAAS. Chondrite-normalized patterns are very similar to that for average Paleozoic felsic volcanic rock, supporting the relatively felsic source indicated by immobile trace element ratios. Tectonic setting discriminants (K2O/Na2O–SiO2/Al2O3, La–Th–Sc, Th–Sc–Zr) indicate an evolved continental island arc (CIA; A2) environment for both terranes, similar to several other CAOB suites of similar age. This common arc source was situated within the Mongol-Okhotsk Ocean during Silurian–Lower Carboniferous time. The present-day Aleutian arc is a possible modern analogue of the depositional setting.  相似文献   

15.
《International Geology Review》2012,54(10):1196-1214
ABSTRACT

The distinct basin and range tectonics in southeast China were generated in a crustal extension setting during the late Mesozoic. Compared with the adjacent granitoids of the ranges, the redbeds of the basins have not been well characterized. In this article, provenance, source weathering, and tectonic setting of the redbeds are investigated by petrographic and geochemical studies of sandstone samples from the Late Cretaceous Guifeng Group of the Yongchong Basin in the Gan-Hang Belt, southeast China. Detrital grains are commonly subangular to subrounded, poorly sorted, and are rich in lithic fragments. The variable pre-metasomatic Chemical Index of Alternation (CIA* = 62–85), Chemical Index of Weathering (CIW = 70.90–98.76, avg. 85.62), Plagioclase Index of Alteration (PIA = 60.23–98.35, avg. 79.91), and high Index of Compositional Variability (ICV = 0.67–3.08, avg. 1.40) values collectively suggest an overall intermediate degree of chemical weathering and intense physical erosion of the source rocks, but a relatively decreased degree of chemical weathering during the late stage (Lianhe Formation) of the Guifeng Group is observed. Several chemical ratios (e.g. Al2O3/TiO2, La/Th, Cr/Th, Th/Sc, Zr/Sc) also suggest a dominant felsic source nature, significant first-cycle sediment supply, and low sedimentary recycling. Such features are consistent with active extension tectonic setting. Sandstone framework models and geochemical characteristics suggest the provenance is related to passive margin (PM), active continental margin (ACM), and continental island arc (CIA) tectonic settings. Sediment derivation from the Neoproterozoic metamorphic rocks and Silurian–Devonian granites indicates a PM provenance, whereas sediments derived from the Early Cretaceous volcanic-intrusive complexes suggest an ACM and CIA nature. Therefore, the Late Cretaceous redbeds were deposited in a dustpan-like half-graben under the back-arc extension regime when southeast China was possibly influenced by northwestward subduction of the Palaeo-Pacific plate beneath East Asia.  相似文献   

16.
A sediment core(ABP24/05),collected at a water depth of 3520 m from the southeastern Bay of Bengal was studied to determine the change in chemical weathering during the last glacial to deglacial periods and the factors of sedimentary environment which controlled earliest diagenetic changes in the sediment after its deposition.High ratios of K/Rb,Ti/Al and Zr/Rb during~45 to~18 cal kyr B.P.in the core sediments may be attributed to the stronger physical erosion and turbidity currents activity during this period.This might have brought a higher quantity of unaltered minerals to the study area.Low ratios of K/Rb,Zr/Rb,and Ti/Al and increase of SiO2/TiO2,Rb/Al and Cs/Al from~18 cal kyr B.P.to present may be indicating an increase in the rate of chemical weathering during this period.The time of increased chemical weathering in the study area is consistent with deglaciation warming in the tropical Indian Ocean and strengthening of river runoff into the Andaman Sea.Climate change during the interglacial period by increased solar insolation thereby strengthened the summer monsoon which might have led to intensified chemical weathering in the source region since~18 cal kyr B.P.The low organic carbon(OC),high Mn/Al,Fe/Al and the Mn-oxides minerals precipitation indicate prevailing of oxic conditions during~11 cal kyr B.P.in the core sediments,which is contradictory to suboxic conditions developed in the deep ocean sediments in the western Bay of Bengal and the equatorial Indian Ocean.The low terrigenous influx and export of less OC to the bottom sediments might have created a favorable condition for the formation of Mn-oxides in the study area during Holocene.  相似文献   

17.
Perturbation on the simplex is an operation which can be used to numerically describe changes in the composition of, for example, soils, sediments, or rocks. The combination of perturbation and power transformation provides a strong tool for analyzing compositional linear processes in the simplex. When the process is constrained in the sense of a well-known starting (or final) composition, noncentred principal component analysis can be used to estimate the leading perturbation vector of the process. Applying these mathematical tools to chemical major element data from a weathering profile developed on granitoid rocks allows us to model the compositional changes associated with the process of chemical weathering. The comparison of these results with the compositional linear trend defined by erosional products of several of the world's major drainage systems yields close similarities. The latter observation allows for a mathematical formulation of a global mean weathering trend within the system Al2O3–CaO– Na2O– K2O. We further demonstrate the usefulness of the approach for validating processes behind individual trends and for combining the effects of different processes which modify the composition of soils, sediments, and rocks. Alternatives to the Chemical Index of Alteration (CIA) are discussed to obtain a translation-invariant scale for the process of chemical weathering.  相似文献   

18.
We collected riverbed sediments of the headwaters of the Yangtze River (Chumaer River, Tuotuo River, Gaerqu River and Buqu River), Tongtian River and Jinsha River (HTJR) flowing on the eastern Tibetan Plateau and analyzed their mineralogical features, major and trace element contents. The results show: (i) very poor correlations of Na2O, K2O, CaO, Ba, and Sr to SiO2, LREE to Th, HREE to Hf, and Ta/La to Ti, and characteristics of Eu anomaly (the ratios of (Eu/Eu*)N range from 0.60 to 0.83 with an average value of 0.71) all indicate that the Jinsha River sediments have not undergone much mineralogical sorting; (ii) illite and chlorite are predominant clay minerals, and quartz, calcite, dolomite, albite, and K-feldspar are prevailing non-clay minerals. The characteristics of mineral assemblage indicate relatively weak chemical weathering degree in these river basins; (iii) very high contents of Fe2O3, MgO, TiO2, Sc, V, Cr, Co, and Ni at Panzhihua mainly result from the huge-sized V–Ti magnetite deposits occurred in layered gabbroic intrusion; and (iv) the chemical alteration index (CIA) in the HTJR ranges from 46.5 to 69.2 and with an average value of 60.5 which indicates relatively weak weathering degree.  相似文献   

19.
This present study describes the elemental geochemistry of fluvial sediments in the Kurigram (upstream) to Sirajganj–Tangail (downstream) section of the Brahmaputra–Jamuna River, Bangladesh, with the aim of evaluating their provenance, weathering and tectonic setting. Petrographically, the sediments are rich in quartz (68%), followed by feldspars (8.5%) and lithic grains (7%). The bulk sediment chemistry is influenced by grain size. Concentrations of TiO2, Fe2O3, MgO, K2O, P2O5, Rb, Nb, Cr, V, Y, and, Ce, Th and Ga slightly decrease with increasing SiO2/Al2O3 and grain size, suggesting clay matrix control. In contrast, concentrations of CaO, Na2O, Sr and Pb increase with increasing SiO2/Al2O3 and grain size, suggesting residence of these substances in feldspar. Decrease in Zr as grain size increases is likely controlled both by clay matrix and heavy minerals. In addition, heavy minerals' sorting also influences Ce, Th, Y and Cr abundances in some samples. The sediments are predominantly quartzose in composition with abundant low-grade metamorphic and sedimentary lithics, low feldspars and trace volcanic detritus, indicating a quartzose recycled orogen province as a source of the sediments. Discriminant diagrams together with immobile element ratio plots show that, the Brahmaputra–Jamuna River sediments are mostly derived from rocks formed in an active continental margin. Moreover, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate derivation of the sediments of Brahmaputra–Jamuna River from felsic rock sources of upper continental crust (UCC). The chemical indices of alteration suggest that Brahmaputra–Jamuna River sediments are chemically immature and experienced low chemical weathering effects. In the A–CN–K ternary diagram, most of the samples close to the plagioclase–K-feldspar join line and to the UCC plot, and in the field of various lithologies of Higher Himalayan Crystalline Series, suggesting that rocks in these series are likely source rocks. Therefore, the elemental geochemistry of the Brahmaputra–Jamuna River sediments is controlled mostly by mechanical breakdown of lithic fragments and subsequent preferential attrition of muscovite > albite > quartz.  相似文献   

20.
《Chemical Geology》2004,203(1-2):75-90
The lead isotopic composition of river sediments is reported in the present work for the Earth's major river basins, from old cratonic to young orogenic areas and from subarctic to tropical climates. Sediment samples from these large river basins provide a useful tool to calculate the average upper crustal composition because they are large-scale integrated samples of the weathering products of the present-day Upper Continental Crust (UCC). Two different and complementary calculations were done to estimate the average lead isotopic composition of the UCC. The first, based on the flux weighted average of particulate lead delivered by the rivers, gave values of 19.07, 15.74 and 39.35 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. To avoid over-estimating the contribution of orogenic areas, which produces a bias (because the flux of particulate lead depends strongly on the physical erosion rate), a second calculation was done by averaging with drainage areas of each river basin. This gave values of 18.93, 15.71 and 39.03 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. These direct calculations of the lead isotopic composition of the UCC are similar and are in agreement with previous estimates made using an indirect approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号