首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Hurricane Floyd in September 1999 caused disastrous flooding from South Carolina to Massachusetts in the United States, with particularly severe and prolonged flooding in eastern North Carolina resulting in record flood-flow loadings of freshwater and contaminants to Pamlico Sound, North Carolina. The inland flooding, water quality, and loadings to Pamlico Sound were determined as part of a multi-agency response to the floods and in an effort to understand the effects of the floods on the greater Pamlico Sound Basin. All major river basins draining to Pamlico Sound experienced floods at the 500-yr recurrence level. The volume of flood waters entering Pamlico Sound during September–October 1999 was estimated to be equivalent to about 95% of the volume of Pamlico Sound, meaning that flood waters could have essentially displaced most of the water present in Pamlico Sound. Nitrogen and phosphorus loads to the Pamlico River estuary and Neuse River estuary, the two principal estuaries draining to Pamlico Sound, in a 36-d period during the flooding were between 50–90% of the long term average annual loads. Pesticide concentrations in flood waters were surprisingly high, given the amount of dilution produced by the floodwaters.  相似文献   

2.
The prevalence of sulphidic sediments in inland wetlands has been only recently recognized in many parts of the world, including Australia. The exposure of sulphidic sediments in these wetlands due to natural and human induced drying events has resulted in the oxidation of iron sulfide minerals, the formation of secondary iron minerals characteristic of acid sulfate soils and the release of highly acidic solutions. The objective of this study was to determine the mineralogy and morphology of sediments collected from the oxidized surface horizon (0-5 cm) of an inland acid sulfate soil located in south-western New South Wales (NSW), Australia. Random powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy (STEM-EDS) techniques were used to characterize the minerals present in these sediments. Akaganéite was identified as the major mineral phase in the sediments; K-jarosite was also determined in small amounts in some sediments. The XRD patterns of sequentially washed (E-pure® water-0.01 M HCl-0.01 M EDTA) sediment samples showed all akaganéite peaks; the Rietveld refinement of these patterns also revealed a predominance of akaganéite. The chemical analyses of the original and washed sediments using STEM-EDS clearly showed the presence of akaganéite as a pure mineral phase with an average Fe/Cl mole ratio of 6.7 and a structural formula of Fe8O8(OH)6.8(Cl)1.2. These findings show that the extreme saline-acidic solutions (pH ∼ 2, EC = 216 dS/m) at the Bottle Bend lagoon provide ideal conditions for the crystallization of this rarely forming mineral.  相似文献   

3.
A distributed water–heat coupled model (DWHC) is calibrated by using daily precipitation data from 26 hydrological and meteorological stations: daily averaged air temperature data from the 11 stations and daily pan evaporation data (E601) from the 15 stations in 2000. Six tests by using different spatial interpolation methods to calculate the above daily meteorological data in each 1 km × 1 km grid, are designed to simulate the mean daily runoff generated from the research Heihe mountainous watershed in 2000. Due to spatial sparseness and asymmetry of the hydrological and meteorological stations, the results of the six tests have little differences. The interpolation method in 3-D mode considering altitude is not better than those taking no account of altitude, nor are the model results when the daily meteorological data at the two stations far from the research watershed are complemented. At last, a nearest neighbor interpolation method in 2-D mode is used to calibrate the DWHC model, in which the revised Nash-Sutcliffe Efficiency NSE, balance error B, determinate coefficient R 2, root mean square error RMSE and average absolute error MAE is about 0.61, 0.08%, 0.73, 25.0 and 15.8 m3s−1, respectively. However, by using the daily data in 1999 to validate the model, the NSE, B, R 2, RMSE and MAE are, respectively, 0.63, −2.98%, 0.77, 34.9 and 20.3 m3s−1. The reason that the model result is not favorable is mainly because of the lack of detailed soil information, meteorological data and vegetation data; even worse, the basic equations for runoff generation processes are mainly derived from the research results in other regions and meanwhile, its flow concentration method should be improved too. The water balance of the research watershed in 2000 is also discussed in this paper. Though the runoff simulation results are not favorable, the estimated evapotranspiration and runoff components are in accordance with the usual knowledge qualitatively, parts of which meet with the field measurements. According to the model results, the runoff is mainly generated from the land surfaces and shallow soil layers in this cold mountainous watershed. The alpine meadow has evident water conservation function based on the model results, field investigation and field observation results. The DWHC model also reproduces the formation processes of the thick-layered ground ice to some extent, though it is suppositional due to lack of detailed soil, vegetation and meteorological information.  相似文献   

4.
The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient (V C), a factor determining the air pollution potential over a region, is also discussed in detail.  相似文献   

5.
《China Geology》2021,4(3):402-409
To identify the response of groundwater level variation to global climate change in Northwest China’s inland basins, the Golmud River Catchment was chosen as a case in this paper. Approaches of time series analysis and correlation analysis were adopted to investigate the variation of groundwater level influenced by global climate change from 1977 to 2017. Results show that the temperature in the Golmud River Catchment rose 0.57°C every 10 years. It is highly positive correlated with global climate temperature, with a correlation coefficient, 0.87. The frequency and intensity of extreme precipitation were both increased. Generally, groundwater levels increased from 1977 to 2017 in all phreatic and confined aquifers and the fluctuation became more violent. Most importantly, extreme precipitation led to the fact that groundwater level rises sharply, which induced city waterlogging. However, no direct evidence shows that normal precipitation triggered groundwater level rise, and the correlation coefficients between precipitation data from Golmud meteorological station located in the Gobi Desert and groundwater level data of five observation wells are 0.13, 0.02, –0.11, 0.04, and –0.03, respectively. This phenomenon could be explained as that the main recharge source of groundwater is river leakage in the alluvial-pluvial Gobi plain because of the high total head of river water and goodness hydraulic conductivity of the vadose zone. Data analysis shows that glacier melting aggravated because of local temperature increased. As a result, runoff caused groundwater levels to ascend from 1977 to 2017. Correlation coefficients of two groundwater wells observation data and runoff of Golmud River are 0.80 and 0.68. The research results will contribute to handling the negative effects of climate change on groundwater for Northwestern China.© 2021 China Geology Editorial Office.  相似文献   

6.
On June 14 2008, an Iwate–Miyagi inland earthquake that had a magnitude of 7.2 hit the eastern foot of the Ohu Mountains in Tohoku district, Japan. The seismic peak ground acceleration was greater than 1,000 gal in the Aratozawa Dam area. The earthquake triggered a massive landslide at the upper reach of the dam. The landslide had the sediment volume of over 67 million cubic meters and is considered the largest catastrophic landslide in Japan during the last 100 years. This report presents a summary of our findings pertinent to the landslide’s activities based on our field investigations that started the day after the landslide. This report covers: (1) details of the land deformations caused by the landslide, (2) geological background pertinent to landslide development, and (3) estimation of the slip surface and the other physical properties of the landslide based on the analysis of the boring core specimens and landform features. The landslide is roughly divided into two sections, a lower and an upper half. The lower half moved almost simultaneously as one massive block of 700 m long, 800 m wide, and 70–80 m thick. The slip surface had developed on the very fine sand of the alternate layer of fine-grained sandstone and siltstone. The slickensided slip surface has a gradient of only 2°. This feature indicates that the type of the landslide movement is considered to be a block glide. The landslide body is nearly identical to the topography of the landslide area that was developed about 50,000 years ago. This shows the possibility that the landslide was reactivated. The upper half consists of two large ridges and the broad debris field and is 600 m long, 900 m wide, and 70–100 m thick. The maximum height of the main scarp is over 150 m.  相似文献   

7.
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Man-made lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom, CO2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m?2. Later, the partial pressure (pCO2) of the aqueous CO2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m?2. In the remaining days, the lake again took up CO2 from the atmosphere with a net flux of 14.804 g·C·m?2. As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO2 and hence CO2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes.  相似文献   

8.
An interdisciplinary study (major and minor elements, C and O isotopes, heavy and light minerals, phyllosilicates, wireline logs) in northern Namibia unraveled the hydrographic and hydraulic evolution of alluvial–fluvial sediments of the Kunene and Cubango megafans (Etosha-Cuvelai Basin). Three principal aquatic regimes were operative within the megafan complex: (1) the hydrographic regime, (2) the proximal hydraulic regime, (3) the distal hydraulic regime. The allogenic mineral assemblages mirror the hydrographic variation or drainage system and the lithological evolution of the fan sediments (alluvial–fluvial fan, lacustrine environment with evaporites, fan delta progradation). Authigenic heavy minerals are markers of the physical–chemical condition (Eh and pH values) of the hydraulic regime within the proximal fan at the basin margin. Authigenic heavy, light and clay minerals equally contribute to the determination of the fluid chemistry and temperature, as well as the source of chemical constituents of the former pore fluids percolating through the distal fan. Carbonatization was the most pronounced event in the distal hydraulic system and controlled by the presence of biogenic as well as atmospheric carbon. The isotope-based determination of the temperatures, albeit strongly fluctuating, do not exceed 40 °C. The overall pH values determined for the hydraulic regime within the distal fan range from slightly acidic to alkaline. The presence of zeolites attests to some short-lasting but strong deviations from the pH range, mainly towards more alkaline conditions. Heavy, light and clay mineral analyses proved to be a useful tool to determine the (paleo)hydrology of alluvial–fluvial fan systems in tropical arid to semiarid climates.  相似文献   

9.
10.
11.
12.
13.
14.
Malkin  Z. M.  Tissen  V. M. 《Astronomy Reports》2022,66(1):75-79
Astronomy Reports - Improvement of the prediction accuracy of the Earth’s rotation parameters (ERP) is one of the main problems of applied astrometry. In order to solve this problem, various...  相似文献   

15.
As is well known, a high content of sulphur in coals is an effect of the post-depositional history of coal seams and one of the most important criteria of its use as a fuel. Sulphur in coals can cause a serious environmental and technological problem during their utilization. This problem is very actual for the Donetsk Basin because 734 mined seams out of the total of 1009 (73%) are comprised of coals with sulphur content -2%. The chemical pre-treatment as a first stage in their processing is widely used in order to effectively obtain the thermal destruction products of coals (such as semi-coke, coke, adsorbents, etc.) and to simultaneously utilize coal wastes. Development in pre-treatment methods for high-sulphur, low-rank coals is especially desirable for reducing the sulphur contents of the solid products. The aim of the present work is to investigate the influence of coal pre-treatment on the yield and composition of thermal destruction products, and the sulphur distribution among different components of the coals of different genetic types by reductivity (low-reduced LRC and reduced RC coals). The thermal behavior of the coals was studied by means of the Fisher method (heated to 520℃, at a rate of 7℃/min). The composition of the semi-coking gas was investigated by means of a VTI gas analyzer. The coal samples were chemically treated directly before thermal destruction by the introduction of 1-% solutions of radical polymerization initiator AAD (acrylic acid dinitrile C8H12N4) and products of coal-tar distillation (absorber oil). Coal pre-treatment increases the semi-coke yield and its coking ability, and changes the liquid/gaseous product ratio.  相似文献   

16.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   

17.
Zonal distribution of seepage hydrocarbon-induced altereb carbonates over oil/gas reservoirs is a common phenomenon observed in the field.The authors considered that the continuous production of CO2 within the “alteration chimney ”gives rise to a significant difference in physical and chemical properties between its interior and the surrounding country rocks.And it is this difference that has promoted the erosion and precipitation of carbonates,thus leading to the zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs.This may be a reasonable interpretation of the phenomenon described above.  相似文献   

18.
19.
Doklady Earth Sciences - The influence of variations in fo-, fa-, en-, fs-, di-, an-, and ab-components in a high-Mg basaltic melt on the topology of the spinellide liquidus was analyzed using the...  相似文献   

20.
Vesignieite, Cu_3Ba(VO_4)_2(OH)_2, crystallizes in space group C_2 / m with a°=1.0270(2), b°=0.5911(1),c°=0.7711(2)nm and β=116.42(3)°. The intensity data were collected with the RIGAKU RASA-IISsingle-crystal four-circle diffractometer. The structure was determined by Patterson and Fourier methods andrefined by the least-square technique to a final R index of 0.051 for 614 independent diffraction points with|F? |>3σ|F?|. The crystal structure analysis shows that vesignieite has a layer structure parallel to (001). The powder diffraction lines were reindexed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号